Skip to main content
Log in

Benefits of Low Carbohydrate Diets: a Settled Question or Still Controversial?

  • Obesity Treatment (D Bessesen, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to provide an update on the available data on the benefits of low-carbohydrate (low-carb) diets for weight management and type 2 diabetes (T2DM) and determine if low-carb diets were a settled question or still controversial.

Recent Findings

Most of the recent published literature in this area consists of reviews of past trials, with a relatively smaller number of recent trials. Low-carb is most commonly compared to low-fat, with problematically inconsistent definitions of both. There are numerous challenges in trying to draw clear conclusions about efficacy and effectiveness. Short-term vs. long-term effects can differ, which is likely impacted by adherence. Adherence is very different between metabolic chamber or feeding studies vs. free-living. Body weight alone is a crude measure that fails to capture potentially important differences in lean-mass, fat-mass, and body water. Benefits for glycemic control need to be balanced with impacts on non-glycemic outcomes such as LDL-cholesterol, the microbiome, and inflammation. It is important to differentiate between low-carb and very-low carbohydrate diets (VLCD). To date no large-scale long-term clinical trials have been conducted testing whether low-carb diets can prevent T2DM.

Summary

Many issues regarding benefits and risks of low-carb diets remain controversial or unresolved, particularly for VLCD. Some of the recent, better studies highlighted in this review suggest strategies for resolving these controversies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. La Berge AF. How the ideology of low fat conquered America. J Hist Med Allied Sci. 2008;63(2):139–77.

    Article  PubMed  Google Scholar 

  2. Clarke C, Best T. Low-carbohydrate, high-fat dieters: characteristic food choice motivations, health perceptions and behaviours. Food Qual Prefer. 2017;62:162–71.

    Article  Google Scholar 

  3. Kamiński M, Skonieczna-Żydecka K, Nowak JK, Stachowska E. Global and local diet popularity rankings, their secular trends, and seasonal variation in Google Trends data. Nutrition. 2020;79:110759.

    Article  PubMed  Google Scholar 

  4. Ludwig DS, Ebbeling CB. The carbohydrate-insulin model of obesity: beyond “calories in, calories out”. JAMA Intern Med. 2018;178(8):1098–103. Provides a discussion of the Carbohydrate-Insulin Model of Obesity (CIM), a conceptual framework for understanding how many dietary and non-dietary exposures might alter hormones, metabolism and adipocyte biology in ways that could predispose to obesity.

  5. Giugliano D, Maiorino MI, Bellastella G, Esposito K. More sugar? No, thank you! The elusive nature of low carbohydrate diets. Endocrine. 2018;61(3):383–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mooradian AD. The merits and the pitfalls of low carbohydrate diet: a concise review. J Nutr Health Aging. 2020;24(7):805–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ludwig DS. The ketogenic diet: evidence for optimism but high-quality research needed. J Nutr. 2020;150(6):1354–9.

    Article  PubMed  Google Scholar 

  8. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. El Ghoch M, Calugi S, Dalle GR. The effects of low-carbohydrate diets on psychosocial outcomes in obesity/overweight: a systematic review of randomized, controlled studies. Nutrients. 2016;8(7):402.

    Article  PubMed Central  CAS  Google Scholar 

  10. Paoli A, Rubini A, Volek J, Grimaldi K. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klement RJ. The emerging role of ketogenic diets in cancer treatment. Curr Opin Clin Nutr Metab Care. 2019;22(2):129–34.

    Article  PubMed  Google Scholar 

  12. Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer–where do we stand? Molecular metabolism. 2020;33:102–21.

    Article  CAS  PubMed  Google Scholar 

  13. Oliveira CL, Mattingly S, Schirrmacher R, Sawyer MB, Fine EJ, Prado CM. A nutritional perspective of ketogenic diet in cancer: a narrative review. J Acad Nutr Diet. 2018;118(4):668–88.

    Article  PubMed  Google Scholar 

  14. Paoli A, Mancin L, Giacona MC, Bianco A, Caprio M. Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. J Transl Med. 2020;18(1):1–11.

  15. Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13(5):689–711. e1. Comprehensive review of the current evidence base available from recent systematic reviews and meta-analyses on the effects of low-CHO and very-low-CHO diets on body weight, lipoprotein lipids, glycemic control, and other cardiometabolic risk factors.

  16. dos Reis PG, Sanches Machado d’Almeida K, Ronchi Spillere S, Corrêa Souza G. Dietary patterns in secondary prevention of heart failure: a systematic review. Nutrients. 2018;10(7):828.

    Article  CAS  Google Scholar 

  17. Watanabe M, Tozzi R, Risi R, Tuccinardi D, Mariani S, Basciani S, et al. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: a comprehensive review of the literature. Obes Rev. 2020;21(8):e13024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahn J, Jun DW, Lee HY, Moon JH. Critical appraisal for low-carbohydrate diet in nonalcoholic fatty liver disease: review and meta-analyses. Clin Nutr. 2019;38(5):2023–30.

    Article  CAS  PubMed  Google Scholar 

  19. Moore MP, Cunningham RP, Dashek RJ, Mucinski JM, Rector RS. A fad too far? Dietary strategies for the prevention and treatment of NAFLD. Obesity. 2020;28(10):1843–52.

    Article  CAS  PubMed  Google Scholar 

  20. Lilamand M, Porte B, Cognat E, Hugon J, Mouton-Liger F, Paquet C. Are ketogenic diets promising for Alzheimer’s disease? A translational review. Alzheimers Res Ther. 2020;12:1–10.

    Article  Google Scholar 

  21. Vasefi M, Hudson M, Ghaboolian-Zare E. Diet associated with inflammation and Alzheimer’s disease. Journal of Alzheimer's disease reports. 2019;3(1):299–309.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joshi S, Ostfeld RJ, McMacken M. The ketogenic diet for obesity and diabetes—enthusiasm outpaces evidence. JAMA Intern Med. 2019;179(9):1163–4.

    Article  PubMed  Google Scholar 

  23. Yamada S. Paradigm shifts in nutrition therapy for type 2 diabetes–nutrition therapy for diabetes. The Keio journal of medicine. 2017;66(3):33–43.

    Article  CAS  PubMed  Google Scholar 

  24. Spritzler F. A low-carbohydrate, whole-foods approach to managing diabetes and prediabetes. Diabetes Spectr. 2012;25(4):238–43.

    Article  Google Scholar 

  25. Sears B, Lawren W. Enter the Zone. Haper Collins: New York, NY; 1995.

  26. Manheimer EW, van Zuuren EJ, Fedorowicz Z, Pijl H. Paleolithic nutrition for metabolic syndrome: systematic review and meta-analysis. Am J Clin Nutr. 2015;102(4):922–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghaedi E, Mohammadi M, Mohammadi H, Ramezani-Jolfaie N, Malekzadeh J, Hosseinzadeh M, et al. Effects of a Paleolithic diet on cardiovascular disease risk factors: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(4):634–46.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Agatston A. The South Beach Diet. New York: NY Rodale; 2003.

  29. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet; a literature review. Nutrients. 2015;7(11):9139–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42(5):731–54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Westman EC, Mavropoulos J, Yancy WS, Volek JS. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep. 2003;5(6):476–83.

    Article  PubMed  Google Scholar 

  32. Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. Washington, DC: U.S. Department of Agriculture, Agricultural Research Service; 2020.

  33. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):e177–232.

    Article  PubMed  PubMed Central  Google Scholar 

  34. O'Neill B, Raggi P. The ketogenic diet: pros and cons. Atherosclerosis. 2020;292:119–26.

    Article  CAS  PubMed  Google Scholar 

  35. Yu E, Malik VS, Hu FB. Cardiovascular disease prevention by diet modification: JACC health promotion series. J Am Coll Cardiol. 2018;72(8):914–26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rosenbaum M, Hall KD, Guo J, Ravussin E, Mayer LS, Reitman ML, et al. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity (Silver Spring). 2019;27(6):971–81.

    Article  CAS  Google Scholar 

  37. Hyde PN, Sapper TN, Crabtree CD, LaFountain RA, Bowling ML, Buga A et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI insight. 2019;4(12).

  38. Gibson AA, Seimon RV, Lee CM, Ayre J, Franklin J, Markovic T, et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev. 2015;16(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  39. Deemer SE, Plaisance EP, Martins C. Impact of ketosis on appetite regulation—a review. Nutr Res. 2020;77:1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Bostock E, Kirkby KC, Taylor BV, Hawrelak JA. Consumer reports of “keto flu” associated with the ketogenic diet. Frontiers in nutrition. 2020;7:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Watanabe M, Tuccinardi D, Ernesti I, Basciani S, Mariani S, Genco A, et al. Scientific evidence underlying contraindications to the ketogenic diet: an update. Obes Rev. 2020;21(10):e13053. A critical review of the literature on the evidence regarding contraindications (based on co-morbidities or conditions) to the ketogenic diet based on current recommendations.

  42. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS, et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348(21):2082–90.

    Article  CAS  PubMed  Google Scholar 

  43. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  44. Foster GD, Wyatt HR, Hill JO, Makris AP, Rosenbaum DL, Brill C, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med. 2010;153(3):147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med. 2004;140(10):778–85.

    Article  PubMed  Google Scholar 

  47. Truby H, Baic S, Delooy A, Fox KR, Livingstone MBE, Logan CM, et al. Randomised controlled trial of four commercial weight loss programmes in the UK: initial findings from the BBC “diet trials”. BMJ. 2006;332(7553):1309–14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, Balise RR, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA. 2007;297(9):969–77.

    Article  CAS  PubMed  Google Scholar 

  49. Yancy WS, Westman EC, McDuffie JR, Grambow SC, Jeffreys AS, Bolton J, et al. A randomized trial of a low-carbohydrate diet vs orlistat plus a low-fat diet for weight loss. Arch Intern Med. 2010;170(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  50. Ebbeling CB, Leidig MM, Feldman HA, Lovesky MM, Ludwig DS. Effects of a low–glycemic load vs low-fat diet in obese young adults: a randomized trial. JAMA. 2007;297(19):2092–102.

    Article  CAS  PubMed  Google Scholar 

  51. Ebbeling CB, Feldman HA, Klein GL, Wong JM, Bielak L, Steltz SK, et al. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ. 2018;363.

  52. Ebbeling C, Knapp A, Johnson A, Wong J, Greco K, Ma C, et al. Effects of a low-carbohydrate diet on cardiometabolic risk factors during weight-loss maintenance: a randomized controlled feeding trial. Current Developments in Nutrition. 2020;4(Supplement_2):625.

    Article  PubMed Central  Google Scholar 

  53. Saslow LR, Daubenmier JJ, Moskowitz JT, Kim S, Murphy EJ, Phinney SD, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. 2017;7(12):1–6.

    Article  Google Scholar 

  54. Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis JP, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA. 2018;319(7):667–79. Randomized controlled trial reported that neither genotype pattern nor insulin-glucose dynamics were related to weight loss for either a low-carbohydrate diet or a low-fat diet.

  55. Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, Mayer LE, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104(2):324–33.

  56. Hall KD, Guo J, Courville AB, Boring J, Brychta R, Chen KY, et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat Med. 2021:1–10. Randomized controlled trial of a plant-based, low-fat diet versus an animal-based, ketogenic diet and found that the low-fat diet led to less energy intake compared to the low-carb diet, contradicting the predictions of the carbohydrate-insulin model.

  57. Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary RA, Radenkovic D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis. Nutrients. 2020;12(12):3774.

    Article  CAS  PubMed Central  Google Scholar 

  58. Seid H, Rosenbaum M. Low carbohydrate and low-fat diets: what we don’t know and why we should know it. Nutrients. 2019;11(11):2749.

    Article  CAS  PubMed Central  Google Scholar 

  59. Public Health Collaboration. A summary table of randomised controlled trials comparing low-carb diets of less than 130g carbohydrate per day to low-fat diets of less than 35% fat of total calories compiled by the Public Health Collaboration. 2018. https://phcuk.org/wp-content/uploads/2018/02/Summary-Table-Of-Randomised-Controlled-Trials-Comparing-Low-Carb-To-Low-Fat-Diets-26.02.2018.pdf. Accessed March 3 2021.

  60. Churuangsuk C, Kherouf M, Combet E, Lean M. Low-carbohydrate diets for overweight and obesity: a systematic review of the systematic reviews. Obes Rev. 2018;19(12):1700–18.

    Article  CAS  PubMed  Google Scholar 

  61. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63(25 Part B):2985–3023.

    Article  PubMed  Google Scholar 

  62. Ebbeling CB, Bielak L, Lakin PR, Klein GL, Wong JM, Luoto PK, et al. Energy requirement is higher during weight-loss maintenance in adults consuming a low-compared with high-carbohydrate diet. J Nutr. 2020;150(8):2009–15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ludwig DS, Greco KF, Ma C, Ebbeling CB. Testing the carbohydrate-insulin model of obesity in a 5-month feeding study: the perils of post-hoc participant exclusions. Eur J Clin Nutr. 2020;74(7):1109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ludwig DS, Lakin PR, Wong WW, Ebbeling CB. Scientific discourse in the era of open science: a response to Hall et al. regarding the carbohydrate-insulin model. Int J Obes. 2019;43(12):2355–60.

    Article  CAS  Google Scholar 

  65. Hall KD, Guo J, Chen KY, Leibel RL, Reitman ML, Rosenbaum M, et al. Methodologic considerations for measuring energy expenditure differences between diets varying in carbohydrate using the doubly labeled water method. Am J Clin Nutr. 2019;109(5):1328–34.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Paoli A, Bosco G, Camporesi EM, Mangar D. Ketosis, ketogenic diet and food intake control: a complex relationship. Front Psychol. 2015;6:27.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hu T, Yao L, Reynolds K, Niu T, Li S, Whelton P, et al. The effects of a low-carbohydrate diet on appetite: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2016;26(6):476–88.

    Article  CAS  PubMed  Google Scholar 

  68. Struik NA, Brinkworth GD, Thompson CH, Buckley JD, Wittert G, Luscombe-Marsh ND. Very low and higher carbohydrate diets promote differential appetite responses in adults with type 2 diabetes: a randomized trial. J Nutr. 2020;150(4):800–5.

    Article  PubMed  Google Scholar 

  69. Hron BM, Ebbeling CB, Feldman HA, Ludwig DS. Relationship of insulin dynamics to body composition and resting energy expenditure following weight loss. Obesity. 2015;23(11):2216–22.

    Article  CAS  PubMed  Google Scholar 

  70. Fechner E, Smeets ET, Schrauwen P, Mensink RP. The effects of different degrees of carbohydrate restriction and carbohydrate replacement on cardiometabolic risk markers in humans—a systematic review and meta-analysis. Nutrients. 2020;12(4):991.

    Article  CAS  PubMed Central  Google Scholar 

  71. Willett WC, Liu S. Carbohydrate quality and health: distilling simple truths from complexity: Oxford University Press; 2019.

  72. Viguiliouk E, Nishi SK, Wolever TM, Sievenpiper JL. Point: glycemic index—an important but oft misunderstood marker of carbohydrate quality. Cereal Foods World. 2018;63(4):158–64.

    CAS  Google Scholar 

  73. Chiavaroli L, Kendall CW, Braunstein CR, Mejia SB, Leiter LA, Jenkins DJ, et al. Effect of pasta in the context of low-glycaemic index dietary patterns on body weight and markers of adiposity: a systematic review and meta-analysis of randomised controlled trials in adults. BMJ Open. 2018;8(3):e019438.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zafar MI, Mills KE, Zheng J, Regmi A, Hu SQ, Gou L, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2019;110(4):891–902.

    Article  PubMed  Google Scholar 

  75. Livesey G, Taylor R, Livesey HF, Buyken AE, Jenkins DJ, Augustin LS, et al. Dietary glycemic index and load and the risk of type 2 diabetes: assessment of causal relations. Nutrients. 2019;11(6):1436.

    Article  CAS  PubMed Central  Google Scholar 

  76. Sievenpiper JL. Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity. Nutr Rev. 2020;78(Supplement_1):69–77. Review assessing the role of carbohydrate quantity versus quality in cardiometabolic health and suggests that a focus on carbohydrate quantity appears to be less useful and provides fewer options than a focus on carbohydrate quality.

  77. Shan Z, Rehm CD, Rogers G, Ruan M, Wang DD, Hu FB, et al. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. JAMA. 2019;322(12):1178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. American Diabetes Association. 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S53–72.

    Article  Google Scholar 

  79. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  80. Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care. 2012;35(2):434–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Athinarayanan SJ, Adams RN, Hallberg SJ, McKenzie AL, Bhanpuri NH, Campbell WW, et al. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: a 2-year non-randomized clinical trial. Front Endocrinol (Lausanne). 2019;10:348. A non-randomized controlled study comparing an individualized low-carb diet to usual care. Participants in the low-carb diet group demonstrated improved HbA1c, fasting glucose and insulin, and HOMA-IR following 2 years.

  82. Luukkonen PK, Dufour S, Lyu K, Zhang X-M, Hakkarainen A, Lehtimäki TE, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci. 2020;117(13):7347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cox N, Gibas S, Salisbury M, Gomer J, Gibas K. Ketogenic diets potentially reverse type II diabetes and ameliorate clinical depression: a case study. Diabetes Metab Syndr Clin Res Rev. 2019;13(2):1475–9.

    Article  Google Scholar 

  84. van Zuuren EJ, Fedorowicz Z, Kuijpers T, Pijl H. Effects of low-carbohydrate-compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. Am J Clin Nutr. 2018;108(2):300–31.

    Article  PubMed  Google Scholar 

  85. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, et al. Comparison of low-and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr. 2015;102(4):780–90.

    Article  CAS  PubMed  Google Scholar 

  86. Guldbrand H, Dizdar B, Bunjaku B, Lindström T, Bachrach-Lindström M, Fredrikson M, et al. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia. 2012;55(8):2118–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41.

    Article  CAS  PubMed  Google Scholar 

  88. Ross LJ, Byrnes A, Hay RL, Cawte A, Musial JE. Exploring the highs and lows of very low carbohydrate high fat diets on weight loss and diabetes-and cardiovascular disease-related risk markers: a systematic review. Nutr Diet. 2020.

  89. Van Wyk H, Davis R, Davies J. A critical review of low-carbohydrate diets in people with type 2 diabetes. Diabet Med. 2016;33(2):148–57.

    Article  PubMed  CAS  Google Scholar 

  90. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124–31.

    Article  CAS  PubMed  Google Scholar 

  91. Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta-analysis. Am J Clin Nutr. 2017;106(2):519–29.

    Article  CAS  PubMed  Google Scholar 

  92. Sacks FM, Carey VJ, Anderson CA, Miller ER, Copeland T, Charleston J, et al. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: the OmniCarb randomized clinical trial. JAMA. 2014;312(23):2531–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zafar M, Mills K, Zheng J, Peng M, Ye X, Chen L. Low glycaemic index diets as an intervention for obesity: a systematic review and meta-analysis. Obes Rev. 2019;20(2):290–315.

    Article  CAS  PubMed  Google Scholar 

  94. Huntriss R, Campbell M, Bedwell C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. 2018;72(3):311–25.

    Article  CAS  PubMed  Google Scholar 

  95. Benson G, Pereira RF, Boucher JL. Rationale for the use of a Mediterranean diet in diabetes management. Diabetes Spectr. 2011;24(1):36–40.

    Article  Google Scholar 

  96. Martín-Peláez S, Fito M, Castaner O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A Review Nutrients. 2020;12(8):2236.

    Article  CAS  Google Scholar 

  97. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;139:239–52.

    Article  CAS  PubMed  Google Scholar 

  98. Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115(3):466–79.

    Article  CAS  PubMed  Google Scholar 

  99. Batch JT, Lamsal SP, Adkins M, Sultan S, Ramirez MN. Advantages and disadvantages of the ketogenic diet: a review article. Cureus. 2020;12(8).

  100. Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: friends or enemies? Genes. 2019;10(7):534. A narrative review of literature on the ketogenic diet’s influence on the microbiome. Review suggests that the ketogenic diet can modulate and reshape gut microbiota; however, further research with long-term clinical trials is warranted.

  101. Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181(6):1263–75. e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  103. Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230–6.

    Article  PubMed  Google Scholar 

  104. Knowler W, Fowler S, Hamman R. Diabetes Prevention Program Research Program. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;372(9102):1677–86.

    Google Scholar 

  105. Pan X-R, Li G-w HY-H, Wang J-X, Yang W-Y, An Z-X, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  106. Gardner CD, Crimarco A, Landry MJ, Fielding-Singh P. Nutrition study design issues—important issues for interpretation. Am J Health Promot. 2020;34(8):951–4.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Freedland SJ, Allen J, Jarman A, Oyekunle T, Armstrong AJ, Moul JW, et al. A randomized controlled trial of a 6-month low-carbohydrate intervention on disease progression in men with recurrent prostate cancer: Carbohydrate and Prostate Study 2 (CAPS2). Clin Cancer Res. 2020;26(12):3035–43.

    Article  CAS  PubMed  Google Scholar 

  108. Hallberg SJ, McKenzie AL, Williams PT, Bhanpuri NH, Peters AL, Campbell WW, et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study. Diabetes Ther. 2018;9(2):583–612.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Morris E, Aveyard P, Dyson P, Noreik M, Bailey C, Fox R, et al. A food-based, low-energy, low-carbohydrate diet for people with type 2 diabetes in primary care: a randomized controlled feasibility trial. Diabetes Obes Metab. 2020;22(4):512–20.

    Article  CAS  PubMed  Google Scholar 

  110. Shih CW, Hauser ME, Aronica L, Rigdon J, Gardner CD. Changes in blood lipid concentrations associated with changes in intake of dietary saturated fat in the context of a healthy low-carbohydrate weight-loss diet: a secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) trial. Am J Clin Nutr. 2019;109(2):433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Figarska SM, Rigdon J, Ganna A, Elmståhl S, Lind L, Gardner CD, et al. Proteomic profiles before and during weight loss: results from randomized trial of dietary intervention. Sci Rep. 2020;10(1):1–8.

    Article  CAS  Google Scholar 

  112. Aronica L, Rigdon J, Offringa LC, Stefanick ML, Gardner CD. Examining differences between overweight women and men in 12-month weight loss study comparing healthy low-carbohydrate vs. low-fat diets. Int J Obes. 2021;45(1):225–34.

    Article  CAS  Google Scholar 

  113. Fragiadakis GK, Wastyk HC, Robinson JL, Sonnenburg ED, Sonnenburg JL, Gardner CD. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am J Clin Nutr. 2020;111(6):1127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Landry MJ, Crimarco A, Perelman D, Durand LR, Petlura C, Aronica L, et al. Adherence to Ketogenic and Mediterranean study diets in a crossover trial: the Keto–Med randomized trial. Nutrients. 2021;13(3):967. A secondary analysis of a randomized controlled trial providing a detailed examination and comparison of adherence to two metabolically distinct diets, theWell Formulated Ketogenic Diet versusMediterranean-Plus Diet in individuals with type 2 diabetes or prediabetes.

  115. Dong T, Guo M, Zhang P, Sun G, Chen B. The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PLoS One. 2020;15(1):e0225348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Goldenberg JZ, Day A, Brinkworth GD, Sato J, Yamada S, Jönsson T, et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ. 2021;372. Systematic review and meta-analysis of randomized clinical trials evaluating low-carbohydrate diets and very-low carbohydrate diets in adults with type 2 diabetes. Suggests that there is continued debate regarding long-term efficacy, safety, and satisfaction to low-carbohydrate diets.

  117. Silverii G, Botarelli L, Dicembrini I, Girolamo V, Santagiuliana F, Monami M, et al. Low-carbohydrate diets and type 2 diabetes treatment: a meta-analysis of randomized controlled trials. Acta Diabetol. 2020;57(11):1375–82.

    Article  CAS  PubMed  Google Scholar 

  118. Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Research and Care. 2017;5(1).

  119. Churuangsuk C, Lean ME, Combet E. Low and reduced carbohydrate diets: challenges and opportunities for type 2 diabetes management and prevention. Proc Nutr Soc. 2020;79:498–513.

    Article  CAS  Google Scholar 

  120. Kelly T, Unwin D, Finucane F. Low-carbohydrate diets in the management of obesity and type 2 diabetes: a review from clinicians using the approach in practice. Int J Environ Res Public Health. 2020;17(7):2557.

    Article  CAS  PubMed Central  Google Scholar 

  121. Merrill JD, Soliman D, Kumar N, Lim S, Shariff AI, Yancy WS. Low-carbohydrate and very-low-carbohydrate diets in patients with diabetes. Diabetes Spectr. 2020;33(2):133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  122. O’Neill BJ. Effect of low-carbohydrate diets on cardiometabolic risk, insulin resistance, and metabolic syndrome. Current Opinion in Endocrinology, Diabetes and Obesity. 2020;27(5):301–7.

    Article  CAS  Google Scholar 

  123. Westman EC, Yancy WS Jr. Using a low-carbohydrate diet to treat obesity and type 2 diabetes mellitus. Current Opinion in Endocrinology, Diabetes and Obesity. 2020;27(5):255–60.

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material

Not applicable.

Funding

This work was supported by a training grant from the NIH National Heart, Lung, and Blood Institute [T32 HL007034] and by the Stanford Diabetes Research Center [NIH P30DK116074].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Gardner.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors report no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, M.J., Crimarco, A. & Gardner, C.D. Benefits of Low Carbohydrate Diets: a Settled Question or Still Controversial?. Curr Obes Rep 10, 409–422 (2021). https://doi.org/10.1007/s13679-021-00451-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-021-00451-z

Keywords

Navigation