Skip to main content
Log in

Prediction of Water Quality Using Principal Component Analysis

  • Published:
Water Quality, Exposure and Health Aims and scope Submit manuscript

Abstract

The groundwater is contaminated heavily with acidity, alkalinity, toxicity, heavy minerals, and microbes throughout the world due to population growth, urbanization and industrialization. Hence, evaluation of water quality of groundwater is extremely important to prepare for remedial measures. This paper presents application of an empirical approach for classification of water samples based on 10 quality parameters of water. In this research work, water samples from 10 sources in three different years and seasons have been collected to assess the quality of water. Q-mode principal component analysis has been applied to classify the water samples into four different categories considering parameters such as pH, DO, turbidity, TDS, hardness, calcium ion (Ca++), chloride ion (Cl), BOD, iron (Fe++), sulfate (\(\mathrm{SO}_{4}^{--}\)). This classification will be useful for the planners and field engineers for taking ameliorative measures in advance for preventing the contamination of groundwater. The non-parametric method proposed here efficiently assesses water quality index for classification of water quality. The model can also be used for estimating water quality on-line but the accuracy of the model depends upon the judicious selection of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a
Fig. 2b

Similar content being viewed by others

References

  • Ahmed S, David KS, Gerald S (2004) Environmental assessment: an innovation index for evaluation water quality in streams. Environ Manag 34:406–414

    Article  Google Scholar 

  • Almasri ML, Kaluarachchi JJ (2004) Assessment and management of long-term water pollution of groundwater in agriculture-dominated watersheds. J Hydrol 295(1–4):225–245

    Article  CAS  Google Scholar 

  • Albadawi Z, Bashir HA, Chen M (2005) A mathematical approach for the formation of manufacturing cells. Comput Ind Eng 48:3–21

    Article  Google Scholar 

  • Ammann A, Eduard H, Sabine K (2003) Groundwater pollution by roof infiltration evidenced with multi-tracer experiments. Water Res 37(5):1143–1153

    Article  CAS  Google Scholar 

  • Brown RM, McClelland NI, Deininger RA, Ronald GT (1970) A water quality index Do we dar? Water Sew Works 117(10):339–343

    Google Scholar 

  • Basilevsky A (1994) Statistical factor analysis and related methods. Wiley, New York

    Book  Google Scholar 

  • Bhargava DS (1983) Use of a water quality index for river classification and zoning of the Ganga River. Environ Pollut B 6:51–67

    Article  Google Scholar 

  • Bhargava DS (1987) Nature and the Ganga. Environ Conserv 14:307–318

    Article  CAS  Google Scholar 

  • Chaudhari GR, Sohani D, Shrivastava VS (2004) Groundwater quality index near industrial area. Indian J Environ Prot 24(1):29–32

    CAS  Google Scholar 

  • Couillard D, Lefebvre Y (1985) Analysis of water quality indices. J Environ Manag 21:161–179

    Google Scholar 

  • Dahiya S, Singh B, Gaur S, Garg VK, Kushwaha HS (2007) Analysis of groundwater quality using fuzzy synthetic evaluation. J Hazard Mater 147(3):938–946

    Article  CAS  Google Scholar 

  • Dijksterhuis G (1998) European dimensions of coffee: rapid inspection of a data set using Q-PCA. Food Qual Prefer 9(3):95–98

    Article  Google Scholar 

  • Dinius SH (1972) Social accounting system for evaluating water resource. Water Resour Res 8(5):1159–1177

    Article  Google Scholar 

  • Dinius SH (1987) Design of an index of water quality. Water Resou Bull 23(5):833–843

    Article  CAS  Google Scholar 

  • Faisal K, Tahir H, Ashok L (2003) Water quality evaluation and trend analysis in selected watersheds of the Atlantic region of Canada. Environ Monit Assess 88:221–248

    Article  Google Scholar 

  • Hair JF Jr, Black WC, Babin BJ, Anderson RE (2009) Multivariate data analysis, 7th edn. Prentice Hall, New York

    Google Scholar 

  • Harrison TD, Cooper JAG, Ramm AEL (2000) Water quality and aesthetics of South African estuaries, Department of Environment Affairs and Tourism, South Africa. Available from www.environment.gov.za/soer/reports/ehi/ehi_ch4.pdf

  • Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–306

    Google Scholar 

  • Iscen CF, Emiroglu O, Ilhan S, Arslan N, Yilmaz V, Ahiska S (2008) Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake. Environ Monit Assess 144(1–3):269–276

    Article  CAS  Google Scholar 

  • Jha AN, Verma PK (2000) Physico-chemical properties of drinking water in town area of Godda district under Santal Pargana (Bihar), India. Pollut Res 19(2):245–247

    CAS  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Karnchanawong S, Ikeguchi SKT (1993) Evaluation of shallow well water quality near a waste disposal site. Environ Int 19(6):579–587

    Article  CAS  Google Scholar 

  • Landwehr JM (1979) A statistical view of a class of water quality indices. Water Resour Res 15(2):460–468

    Article  Google Scholar 

  • Lind CJ, Carol L, Creasey CA (1998) In situ alteration of minerals by acidic groundwater resulting from mining activities: preliminary evaluation of method. J Geochem Explor 64(1–3):293–305

    Article  CAS  Google Scholar 

  • Lohani BN, Todino G (1984) Water quality index for Chao Phraya River. J Environ Eng 110(6):1163–1176

    Article  CAS  Google Scholar 

  • Lumb A, Sharma TC, Bibeault JF (2011) A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual Health Expos: 11–24

  • Lumb A, Halliwell D, Sharma T (2006) Application of CCME water quality index to monitor water quality: a case of the Mackenzie River Basin, Canada. Environ Monit Assess 113:411–429

    Article  CAS  Google Scholar 

  • Maticie B (1999) The impact of agriculture on groundwater quality in Slovenia: standards and strategy. Agric Water Manag 40(2–3):235–247

    Article  Google Scholar 

  • Montgomery DC, Runger GC (1999) Applied statistics and probability for engineers. Wiley, New York

    Google Scholar 

  • Nagarajan P, Priya GK (1999) Groundwater quality deterioration in Tiruchirapalli, Tamilnadu. J Ecotoxicol Environ Monit 9(2):155–159

    CAS  Google Scholar 

  • Nives SG (1999) Water quality evaluation by index in Dalmatia. Water Resour 33:3423–3440

    Google Scholar 

  • Park S, Choi D, Jun CH (2001) A clustering method for discovering patterns using gene regulatory processes. Genome Inform 12:249–251

    CAS  Google Scholar 

  • Parinet B, Lhote A, Legube B (2004) Principal component analysis: an appropriate tool for water quality evaluation and management-application to a tropical lake system. Ecol Model 178:295–311

    Article  CAS  Google Scholar 

  • Sabal D, Khan TI (2008) Fluoride contamination status of groundwater in Phulera tehsil of Jaipur district, Rajasthan. J Environ Biol 29:871–876

    CAS  Google Scholar 

  • Sarkar C, Abbasi SA (2006) Qualidex—a new software for generating water quality indices. Environ Monit Assess 119:201–231

    Article  CAS  Google Scholar 

  • Shaji C, Nimi H, Bindu L (2009) Water quality assessment of open wells in and around Chavara industrial area, Quilon, Kerala. J Environ Biol 30(5):701–704

    CAS  Google Scholar 

  • Shamruck M, Corapcioglu MY, Fayek AA, Hassona (2001) Modeling the effect of chemical fertilizers on groundwater quality in the Nile Valley aquifer, Egypt. Groundwater 39(1):59–67

    Article  Google Scholar 

  • Sharma RK, Agarwal M (2005) Biological effects of heavy metals. J Environ Biol 26:301–313

    CAS  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River Basin, Japan. Environ Model Softw 22:464–475

    Article  Google Scholar 

  • Singh KP, Parwana HK (1999) Groundwater pollution due to industrial wastewater in Punjab state and strategies for its control. Indian J Environ Prot 19(4):241–244

    CAS  Google Scholar 

  • Singh B, Sudhir D, Sandeep J, Garg VK, Kushwaha HS (2008) Use of fuzzy synthetic evaluation for assessment of groundwater quality for drinking usage: a case study of southern Haryana. Indian Environ Geol 54:249–255

    Article  Google Scholar 

  • Singh UK, Kumar M, Chauhan R, Jha PK, Ramanathan AL, Subramanian V (2008) Assessment of the impact of landfill on groundwater quality: a case study of the Pirana site in western India. Environ Monit Assess 141(1–3):309–321

    Article  CAS  Google Scholar 

  • Srinivas C, Shankar R, Venkateshwar C, Rao MSS, Reddy RR (2000) Studies on groundwater quality of Hyderabad. Pollut Res 19(2):285–289

    CAS  Google Scholar 

  • Swamee PK, Tyagi A (2000) Describing water quality with aggregate index. J Environ Eng 126(5):451–455

    Article  CAS  Google Scholar 

  • Shiow-Mey L, Shang-Lien, Shan-Hsien W (2004) A generalized water quality index for Taiwan. Environ Monit Assess 96:35–52

    Article  Google Scholar 

  • Tyagi P, Budhi D, Sawhney RL (2003) A correlation among physico-chemical parameters of groundwater in and around Pithampur industrial area. Indian J Environ Prot 23(11):1276–1282

    CAS  Google Scholar 

  • Tiwari TN, Mishra M (1985) A preliminary assignment of water quality index of major Indian Rivers. Indian J Environ Prot 5(4):276–279

    CAS  Google Scholar 

  • Ubala B, Farooqui M, Arif M, Zaheer A, Dhule DG (2001) Regression analysis of groundwater quality data of Chikalthana industrial area, Aurangabad (Maharashtra). Orient J Chem 17(2):347–348

    Google Scholar 

  • Valarmathie P, Srinath MV, Dinakaran K (2009) Increased performance of clustering high dimensional data through dimensionality reduction technique. J Theor Appl Inf Technol 5(6):731–733

    Google Scholar 

  • Walski TM, Parker FL (1974) Consumers water quality index. J Environ Eng Div 100(3):593–611

    Google Scholar 

  • WHO (2006) Guidelines for drinking water quality first addendum to 3rd edn (I) recommendations, Geneva, Switzerland

  • Woocay A, Walton J (2008) Multivariate analyses of water chemistry: surface and ground water interactions. Groundwater 46(3):437–449

    Article  CAS  Google Scholar 

  • Zhang WL, Tian X, Zhang N, Li XQ (1996) Water pollution of groundwater in northern China. Ecosyst Environ 59(3):223–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, S.S., Sahu, M., Patel, R.K. et al. Prediction of Water Quality Using Principal Component Analysis. Water Qual Expo Health 4, 93–104 (2012). https://doi.org/10.1007/s12403-012-0068-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-012-0068-9

Keywords

Navigation