Skip to main content
Log in

Soil-Cement Bricks Development Using Polymeric Waste

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research aimed to evaluate the effect of adding different polymeric waste percentages and types on the physical, mechanical, thermal, and durability properties of soil-cement bricks. Tire and polyethylene terephthalate (PET) waste were evaluated at 1.5 and 3.0% (mass/mass). The soil was characterized in terms of shrinkage, compaction, consistency limits, particle size, and chemical analyses, whereas the waste particles were submitted to morphological characterization. The bricks were produced in an automatic press with a 90:10 (mass/mass) soil:cement ratio. The soil-cement bricks were characterized by density, moisture, water absorption, loss of mass by immersion, compressive strength, thermal conductivity, and microstructural analysis. PET waste stood out for its use as reinforcement in soil-cement bricks. The best performance was obtained for bricks reinforced with 1.5% PET, which showed a significant compressive strength improvement, meeting the marketing standards criteria, even after the durability test, as well as obtaining the lowest thermal conductivity values. The percentage increase from 1.5 to 3.0% fostered a significant water absorption and loss of mass increase, as well as a significant compressive strength reduction of the bricks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alani AH, Bunnori NM, Noaman AT, Majid TA (2019) Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Constr Build Mater 209:395–405. https://doi.org/10.1016/j.conbuildmat.2019.03.088

    Article  CAS  Google Scholar 

  • Altoé SPS (2017) Avaliação da resistência mecânica de pavers fabricados com resíduos de pneus em substituição parcial do agregado miúdo. Synerg scyentifica UTFPR 12:262–268

    Google Scholar 

  • AMERICAN SOCIETY FOR TESTING AND MATERIALS (2017) ASTM D1895 - 17 standard test methods for apparent density, bulk factor, and pourability of plastic materials

  • AMERICAN SOCIETY FOR TESTING AND MATERIALS (2020) ASTM C150/C150M-20 Standard Specification for Portland Cement

  • Arunraj E, Jebadurai SVS, Daniel C et al (2019) Experimental study on compressive strength of brick using natural fibres. Int J Eng 32:799–804. https://doi.org/10.5829/ije.2019.32.06c.01

    Article  CAS  Google Scholar 

  • Ashour T, Korjenic A, Korjenic S, Wu W (2015) Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum. Energy Build 104:139–146. https://doi.org/10.1016/j.enbuild.2015.07.016

    Article  Google Scholar 

  • ASSOCIACAO BRASILEIRA DE CIMENTO PORTLAND (1989) Fabricacao de tijolos e blocos de solo-cimento com a utilizacao de prensas hidraulicas. Bol Técnico 112

  • ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND - ABCP (1985) Guia de construções rurais à base de cimento.

  • ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND - ABCP (1986) DOSAGEM DAS MISTURAS DE SOLO-CIMENTO NORMAS DE DOSAGEM E MÉTODOS DE ENSAIOS. São Paulo: ABCP, Estudo Técnico ET - 35.

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1997) NM ISO 2395:1997 - Peneira de ensaio e ensaio de peneiramento. 9

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2008) NBR 15220-2 - Desempenho térmico de edificações Parte 2: Método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. 34

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2012a) NBR 12023: Solo-cimento – Ensaio de compactação. Rio Janeiro ABNT 7

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2012b) NBR 8492 - Tijolo de solo-cimento — Análise dimensional, determinação da resistência à compressão e da absorção de água — Método de ensaio. 4

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2012c) NBR 13554 - Solo-cimento — Ensaio de durabilidade por molhagem e secagem — Método de ensaio. 4

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2013a) NBR 10833 - Fabricação de tijolo e bloco de solo-cimento com utilização de prensa manual ou hidráulica — Procedimento. 3

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2013b) NBR 10834 - Bloco de solo-cimento sem função estrutural — Requisitos. 5

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2016) NBR 7180 - Solo — Determinação do limite de plasticidade. 3

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2017) NBR 6459 - Solo - Determinação do limite de liquidez. 5

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2018) NBR 7181 - Solo - Análise granulométrica.12

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2020) NBR 7182 - Solo - Ensaio de compactação. 9

  • Barbosa MFL, Pironcelli ABS, Silva CA, Junior AC, Cereda MP, Magalhães Filho FJC (2019) Rice husk and water treatment plant sludge incorporated into soil–cement brick. Asian J Civ Eng 20:563–570. https://doi.org/10.1007/s42107-019-00124-2

    Article  Google Scholar 

  • Barreto JML, da Costa HN, Cândido LF, Cabral Correio AEB (2019) Analysis of physical and mechanical properties of pressed concrete blocks without structural purposes with additions of recycled PET. Rev Mater 24:1517–7076. https://doi.org/10.1590/s1517-707620190002.0672

    Article  CAS  Google Scholar 

  • Barros MM, de Oliveira MFL, da Conceição Ribeiro RC, Bastos DC, de Oliveira MG (2020) Ecological bricks from dimension stone waste and polyester resin. Constr Build Mater 232:117–252. https://doi.org/10.1016/j.conbuildmat.2019.117252

    Article  CAS  Google Scholar 

  • Bekhiti M, Trouzine H, Rabehi M (2019) Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Constr Build Mater 208:304–313. https://doi.org/10.1016/j.conbuildmat.2019.03.011

    Article  CAS  Google Scholar 

  • Boukour S, Benmalek ML (2016) Performance evaluation of a resinous cement mortar modified with crushed clay brick and tire rubber aggregate. Constr Build Mater 120:473–481. https://doi.org/10.1016/j.conbuildmat.2016.05.119

    Article  CAS  Google Scholar 

  • BRAZILIAN MICRO AND SMALL BUSINESSES SUPPORT SERVICE - SEBRAE (2017) Como montar uma fábrica de tijolos ecológicos. URCA 1:1–10

    Google Scholar 

  • Brazilian PET Industry Association - ABIPET (2017) Reciclagem - Aplicações para PET Reciclado. http://www.abipet.org.br/index.html?method=mostrarInstitucional&id=72. Accessed 30 Nov 2020

  • Brazilian Portland Cement Association - ABCP (1986) Guia de construções rurais à base de cimento. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=441903&biblioteca=vazio&busca=autoria:%22ASSOCIACAO BRASILEIRA DE CIMENTO PORTLAND.%22&qFacets=autoria:%22ASSOCIACAO BRASILEIRA DE CIMENTO PORTLAND.%22&sort=&paginacao=t&paginaAtual=1. Accessed 30 Nov 2020

  • Bueno B de S, Vilar OM (1980) Mecânica dos solos

  • Capanema DC de O, Galvão FH, Santana KMF, et al (2014) Estudo do uso de rejeitos como agregados para o concreto

  • Cristelo N, Cunha VMCF, Dias M, Gomes AT, Miranda T, Araújo N (2015) Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotext Geomembr 43:1–13. https://doi.org/10.1016/j.geotexmem.2014.11.007

    Article  Google Scholar 

  • Dantas NKP, Sales MWR, Dantas IKP, Bosco LKO (2019) ESTUDO GRANULOMÉTRICO DO RESÍDUO DE CONSTRUÇÃO E DEMOLIÇÃO PARA FABRICAÇÃO DE MISTURA DE SOLO-CIMENTO. Glob Sci Technol 12:1

    Google Scholar 

  • Elenien KFA, Abdel-Wahab A, ElGamsy R, Abdellatif MH (2018) Assessment of the properties of PP composite with addition of recycled tire rubber. Ain Shams Eng J 9:3271–3276. https://doi.org/10.1016/j.asej.2018.05.001

    Article  Google Scholar 

  • Eugênio TMC, Fagundes JF, Viana QS, et al (2021) Study on the feasibility of using iron ore tailing (iot) on technological properties of concrete roof tiles. Constr Build Mater 279:122484 https://doi.org/10.1016/j.conbuildmat.2021.122484

  • Ferreira RC, Freire WJ (2003) Propriedades fisico-mecanicas de solos estabilizados com cimento e silicato de sodio avaliados por meio de testes destrutivos e nao-destrutivos. Eng Agric 23:221–232

    Google Scholar 

  • Ferreira R de C, Oliveira MF (2007) INCORPORAÇÃO DE RESÍDUOS VEGETAIS E SEUS EFEITOS SOBRE AS CARACTERÍSTICAS FÍSICO-MECÂNICAS DE MISTURAS DE SOLO-CIMENTO PARA FINS DE CONSTRUÇÃO RURAL

  • Fioriti CF, Ino A, Akasaki JL (2017) Avaliação de blocos de concreto para pavimentação intertravada com adição de resíduos de borracha provenientes da recauchutagem de pneus. Ambient Construído 7:43–54

    Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31:521–532. https://doi.org/10.1139/t94-061

    Article  Google Scholar 

  • Garcia EF, Cabello JF, Giro MM, Navarro ASV (2018) Thermal behaviour of hollow blocks and bricks made of concrete doped with waste tyre rubber. Constr Build Mater 176:193–200. https://doi.org/10.1016/j.conbuildmat.2018.05.015

    Article  Google Scholar 

  • Ge Z, Yue H, Sun R (2015) Properties of mortar produced with recycled clay brick aggregate and PET. Constr Build Mater 93:851–856. https://doi.org/10.1016/j.conbuildmat.2015.05.081

    Article  Google Scholar 

  • Gupta V, Chai HK, Lu Y, Chaudhary S (2020) A state of the art review to enhance the industrial scale waste utilization in sustainable unfired bricks. Constr Build Mater 254:119220

    Article  Google Scholar 

  • Hidalgo C, Carvajal G, Muñoz F (2019) Laboratory evaluation of finely milled brick debris as a soil stabilizer. Sustainability 11:967. https://doi.org/10.3390/su11040967

    Article  CAS  Google Scholar 

  • HIGHWAY RESEARCH BOARD (HRB) (1961) Soil classification - soil stabilization with Portland cement. Belletin 292

  • Huzaifah MRM, Sapuan SM, Leman Z, Ishak MR (2019) Effect of soil burial on physical, mechanical and thermal properties of sugar palm fibre reinforced vinyl ester composites. Fibers Polym 20:1893–1899. https://doi.org/10.1007/s12221-019-9159-6

    Article  CAS  Google Scholar 

  • ICPA – Instituto del Cemento Portland Argentino. (1973). Boletin. Buenos Aires, mar./abr., 32p

  • INDIAN STANDART (1982) IS 1725 (1982): soil based blocks used in general building construction. Bur Indian Stand

  • Jin L, Song W, Shu X, Huang B (2018) Use of water reducer to enhance the mechanical and durability properties of cement-treated soil. Constr Build Mater 159:690–694. https://doi.org/10.1016/j.conbuildmat.2017.10.120

    Article  CAS  Google Scholar 

  • Kazmierczak C d S, Schneider SD, Aguilera O et al (2020) Rendering mortars with crumb rubber: Mechanical strength, thermal and fire properties and durability behaviour. Constr Build Mater 253:119002. https://doi.org/10.1016/j.conbuildmat.2020.119002

    Article  Google Scholar 

  • Khedari J, Watsanasathaporn P, Hirunlabh J (2005) Development of fibre-based soil-cement block with low thermal conductivity. Cem Concr Compos 27:111–116. https://doi.org/10.1016/j.cemconcomp.2004.02.042

    Article  CAS  Google Scholar 

  • Laborel-Préneron A, Aubert JE, Magniont C, Tribout C, Bertron A (2016) Plant aggregates and fibers in earth construction materials: A review. Constr Build Mater 111:719–734

    Article  Google Scholar 

  • Lai X, Lu C, Liu J (2019) A synthesized factor analysis on energy consumption, economy growth, and carbon emission of construction industry in China. Environ Sci Pollut Res 26:13896–13905. https://doi.org/10.1007/s11356-019-04335-7

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Wang R, Dang F (2019) Potential use of waste tire rubber as aggregate in cement concrete – A comprehensive review. Constr Build Mater 225:1183–1201

    Article  CAS  Google Scholar 

  • Malaiškiene J, Vaičiene M, Žurauskiene R (2011) Effectiveness of technogenic waste usage in products of building ceramics and expanded clay concrete. Constr Build Mater 25:3869–3877. https://doi.org/10.1016/j.conbuildmat.2011.04.008

    Article  Google Scholar 

  • Manohar S, Santhanam M, Chockalingam N (2019) Performance and microstructure of bricks with protective coatings subjected to salt weathering. Constr Build Mater 226:94–105. https://doi.org/10.1016/j.conbuildmat.2019.07.180

    Article  CAS  Google Scholar 

  • Milani APS, Freire WJ (2006) Características físicas e mecânicas de misturas de solo, cimento e casca de arroz. Eng Agrícola 26:1–10. https://doi.org/10.1590/s0100-69162006000100001

    Article  Google Scholar 

  • Mishra B, Kumar Gupta M (2018) Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Constr Build Mater 190:95–107. https://doi.org/10.1016/j.conbuildmat.2018.09.074

    Article  CAS  Google Scholar 

  • Modro NLR, Modro NR, Modro NR, Oliveira APN (2009) Evaluation of concrete made of Portland cement containing PET wastes. Rev Mater 14:725–736. https://doi.org/10.1590/s1517-70762009000100007

    Article  CAS  Google Scholar 

  • Montardo J, Consoli N, Prietto P (2001) Comportamento mecânico de compósitos solo-cimento-fibra: Estudo do efeito das propriedades dos materiais constituintes. Rev Solos e Rocha 24:191–209

    Google Scholar 

  • Motta JCSS, Morais PWP, Rocha GN et al (2014) TIJOLO DE SOLO-CIMENTO: ANÁLISE DAS CARACTERÍSTICAS FÍSICAS E VIABILIDADE ECONÔMICA DE TÉCNICAS CONSTRUTIVAS SUSTENTÁVEIS. e-xacta 7:13–26. https://doi.org/10.18674/exacta.v7i1.1038

    Article  Google Scholar 

  • Muntohar AS (2011) Engineering characteristics of the compressed-stabilized earth brick. Constr Build Mater 25:4215–4220. https://doi.org/10.1016/j.conbuildmat.2011.04.061

    Article  Google Scholar 

  • Murmu AL, Patel A (2018) Towards sustainable bricks production: an overview. Constr Build Mater 165:112–125

    Article  Google Scholar 

  • Naidu AL, Kona S (2018) experimental study of the mechanical properties of banana fiber and groundnut shell ash reinforced epoxy hybrid composite. Int J Eng Trans A Basics 31:659–665. https://doi.org/10.5829/ije.2018.31.04a.18

    Article  Google Scholar 

  • Paschoalin Filho JA, Storopoli JH, Guerner Dias AJ (2016) <b>Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate) wastes. Acta Sci Technol 38:163. https://doi.org/10.4025/actascitechnol.v38i2.28458

    Article  Google Scholar 

  • Pecoriello LA, Barros JMC (2004) Alvenarias de tijolos de solo-cimento. Rev TECHNE 87:58–61

    Google Scholar 

  • Piani TL, Krabbenborg D, Weerheijm J, Koene L, Sluijs LJ (2018) The mechanical performance of traditional adobe masonry components: An experimental-analytical characterization of soil bricks and mud mortar. J Green Build 13:17–44. https://doi.org/10.3992/1943-4618.13.3.17

    Article  Google Scholar 

  • Piani TL, Weerheijm J, Peroni M et al (2020) Dynamic behaviour of adobe bricks in compression: The role of fibres and water content at various loading rates. Constr Build Mater 230:117038. https://doi.org/10.1016/j.conbuildmat.2019.117038

    Article  Google Scholar 

  • Rahman M, Rashiduzzaman M, Akhand F, Kabir K (2016) Compressed stabilized earth block: a green alternative for non-load bearing building block in developing countries like Bangladesh. Am Chem Sci J 12:1–10. https://doi.org/10.9734/acsj/2016/23071

    Article  Google Scholar 

  • Reddy BV, Latha MS (2014) Influence of soil grading on the characteristics of cement stabilised soil compacts. Mater Struct Constr 47:1633–1645. https://doi.org/10.1617/s11527-013-0142-1

    Article  CAS  Google Scholar 

  • Reis JML, Carneiro EP (2012) Evaluation of PET waste aggregates in polymer mortars. Constr Build Mater 27:107–111. https://doi.org/10.1016/j.conbuildmat.2011.08.020

    Article  Google Scholar 

  • Reis FMD, Ribeiro RP, Reis MJ (2020) Physical-mechanical properties of soil-cement bricks with the addition of the fine fraction from the quartzite mining tailings (State of Minas Gerais – Brazil). Bull Eng Geol Environ 79:3741–3750

    Article  CAS  Google Scholar 

  • Research and Development Center - CEPED (1984) Manual de construcao com solo-cimento, 3rd edn.

  • Sadek DM, El-Attar MM (2015) Structural behavior of rubberized masonry walls. J Clean Prod 89:174–186. https://doi.org/10.1016/j.jclepro.2014.10.098

    Article  Google Scholar 

  • Saidi M, Cherif AS, Zeghmati B, Sediki E (2018) Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr Build Mater 167:566–577. https://doi.org/10.1016/j.conbuildmat.2018.02.063

    Article  Google Scholar 

  • Salih MM, Osofero AI, Imbabi MS (2020) Constitutive models for fibre reinforced soil bricks. Constr Build Mater 240:117806. https://doi.org/10.1016/j.conbuildmat.2019.117806

    Article  Google Scholar 

  • Sappakittipakorn M, Sukontasukkul P, Higashiyama H, Chindaprasirt P (2018) Properties of hooked end steel fiber reinforced acrylic modified concrete. Constr Build Mater 186:1247–1255. https://doi.org/10.1016/j.conbuildmat.2018.08.055

    Article  CAS  Google Scholar 

  • SECRETARIA DE SERVIÇOS PÚBLICOS (2003) MÉTODOS DE ENSAIO - ME 61 - DETERMINAÇÃO DA PERDA DE MASSA POR IMERSÃO DE SOLOS COMPACTADOS COM EQUIPAMENTO MINIATURA. Prefeitura de Recife 12

  • Segantini AA d S, Wada PH (2011) Estudo de dosagem de tijolos de solo-cimento com adição de resíduos de construção e demolição. Acta Sci - Technol 33:179–183. https://doi.org/10.4025/actascitechnol.v33i2.9377

    Article  Google Scholar 

  • Sekhar CD, Nayak S (2018) Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Constr Build Mater 166:531–536. https://doi.org/10.1016/j.conbuildmat.2018.01.125

    Article  Google Scholar 

  • Silva R de, Pasbakhsh P, Qureshi AJ, et al (2014) Stress transfer and fracture in nanostructured particulate-reinforced chitosan biopolymer composites: influence of interfacial shear stress and particle slenderness. In: Composite Interfaces. Taylor and Francis Ltd., pp 807–818

  • Soares AF, Rocha R, Elmi S, Henriques MH (1996) Le sous-bassin nord lusitanien (Portugal) du Trias au Jurassique moyen: histoire d´un “rift avorté”. Rendus I’Académie dês Scienses 317:1659–1666

    Google Scholar 

  • Song Q, Li J, Zeng X (2015) Minimizing the increasing solid waste through zero waste strategy. J Clean Prod 104:199–210. https://doi.org/10.1016/j.jclepro.2014.08.027

    Article  Google Scholar 

  • Souza MIB, Segantini AAS, Pereira JA (2008) Tijolos prensados de solo-cimento confeccionados com resíduos de concreto

  • Specht LP, Heineck KS, Ceratti JAP, Consoli NC (2002) Comportamento de misturas de solo-cimento-fibra submetidas a carregamentos estáticos e dinâmicos. Soils and Rocks 25:15

    Google Scholar 

  • Speight J (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill Education

  • Taylor HFW (1998) Cement chemistry - H. F. W. Taylor - Google Livros, 2nd edn. London

  • Teixeira JN, Silva DW, Vilela AP, Savastano Junior H, de Siqueira Brandão Vaz LEV, Mendes RF (2020) Lignocellulosic materials for fiber cement production. Waste and Biomass Valorization 11:2193–2200. https://doi.org/10.1007/s12649-018-0536-y

    Article  CAS  Google Scholar 

  • Thakur A, Senthil K, Sharma R, Singh AP (2020) Employment of crumb rubber tyre in concrete masonry bricks. Mater Today Proc 32:553–559. https://doi.org/10.1016/j.matpr.2020.02.106

    Article  CAS  Google Scholar 

  • Touré PM, Sambou V, Faye M, Thiam A, Adj M, Azilinon D (2017) Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB). J Build Eng 13:266–271. https://doi.org/10.1016/j.jobe.2017.08.012

    Article  Google Scholar 

  • Tran KQ, Satomi T, Takahashi H (2018) Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr Build Mater 178:204–210. https://doi.org/10.1016/j.conbuildmat.2018.05.104

    Article  Google Scholar 

  • Turgut P, Gumuscu M (2013) Thermo-elastic properties of artificial limestone bricks with wood sawdust. undefined

  • Vilela AP, Silva DW, Mendes LM et al (2017) Effects of the corona treatment of rubber tire particles on the properties of particleboards. - Portal Embrapa. BioResources 12:9452–9465

    CAS  Google Scholar 

  • Vilela AP, Silva DW, Mendes LM et al (2018) Surface modification of tire rubber waste by air plasma for application in wood-cement panels. BioResources 13:6409–6427. https://doi.org/10.15376/biores.13.3.6409-6427

    Article  CAS  Google Scholar 

  • Vilela AP, Eugênio TMC, Oliveira FF et al (2020) Technological properties of soil-cement bricks produced with iron ore mining waste. Constr Build Mater 262:120883 https://doi.org/10.1016/j.conbuildmat.2020.120883

  • Wang X, He WW (2003) Invited review paper mechanical properties of irregular fibers. Materials and Energy Research Center

  • Wang S, Le HTN, Poh LH et al (2017) Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete. Constr Build Mater 136:31–43. https://doi.org/10.1016/j.conbuildmat.2016.12.183

    Article  CAS  Google Scholar 

  • Yadav JS, Tiwari SK (2017) Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement. Appl Clay Sci 149:97–110. https://doi.org/10.1016/j.clay.2017.07.037

    Article  CAS  Google Scholar 

  • Zak P, Ashour T, Korjenic A, Korjenic S, Wu W (2016) The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials. Constr Build Mater 106:179–188. https://doi.org/10.1016/j.conbuildmat.2015.12.031

    Article  Google Scholar 

  • Zhang L (2013) Production of bricks from waste materials - a review. Constr Build Mater 47:643–655

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Minas Gerais State Agency for Research and Development (FAPEMIG - APQ-02204-16; FAPEMIG –APQ -00891-16), the National Council of Technological and Scientific Development (CNPq - Grants 305214/2017-9; Grants 305662/2020-1), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - Grant 26622-4/2019), and the Coordination for the Improvement of Higher Education Personnel (CAPES) for their financial support.

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG - APQ-02204-1

Author information

Authors and Affiliations

Authors

Contributions

SLOM—Investigation; methodology; writing—review and editing

TPFS—Investigation; methodology

JFM—Investigation; methodology

AGCR—Investigation; methodology

RFM—Conceptualization; funding acquisition; investigation; methodology; resources; supervision; writing—review and editing

All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Rafael Farinassi Mendes.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzker, S.L.O., Sabino, T.P.F., Mendes, J.F. et al. Soil-Cement Bricks Development Using Polymeric Waste. Environ Sci Pollut Res 29, 21034–21048 (2022). https://doi.org/10.1007/s11356-021-16769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16769-z

Keywords

Navigation