Skip to main content
Log in

In Situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I α and I β as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy

  • Research Papers
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To obtain further information about the formation of cellulose Iα and Iβ, cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy was used to study the effects of polymeric additives, stirring and culture temperature on the Iα When xyloglucan (XG) or carboxymethyl cellulose sodium salt (CMC) was added to the incubation medium, the amount of cellulose Iα decreased markedly, from a normal level of 64% to as low as 30%, with the most additive giving the lowest levels of Iα. Moreover, stirring causes mixtures containing even small amounts of XG to have a large effect. These results suggest that CMC or XG interferes with the aggregation of fibrillar units into the normal ribbon assemblies. It may be that there is a strain associated with this aggregation that results in the higher-energy Iα form. Thus, cellulose Iβ may grow preferentially when the strain caused by aggregation is not present. Lower temperatures (36–10 °C) gave an increase in Iα (from 56 to 72%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atalla, R. H. and VanderHart, D. L. (1984)Science 223, 283–285.

    Google Scholar 

  • Atalla, R. H., Gast, J. C., Sindorf, D. W., Bartuska, V. J. and Maciel, G. E. (1980)J. Amer. Chem, Soc. 102, 3249–3251.

    Google Scholar 

  • Atalla, R. H., Hackney, J. M., Uhlin, I. and Thompson, N. S. (1993)Int. J. Biol. Macromol. 15, 109–112.

    Google Scholar 

  • Chanzy, H., Imada, K., Mollard, A., Vuong, R. and Barnard, F. (1979)Protoplasma 100, 317.

    Google Scholar 

  • Chanzy, H., Henrissat, B., Vincendon, M., Tanner, S. F. and Belton, P. S. (1987)Carbohydrate Res. 160, 1–11.

    Google Scholar 

  • Earl, W. L. and VanderHart, D. L. (1980)J. Amer. Chem. Soc. 102, 3251–3252.

    Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974)Biopolymers 13, 1975–2001.

    Google Scholar 

  • Haigier, C. H. (1991) InByosynthesis and Biodegradation of Cellulose (C. H. Haigler and P. J. Weimer, eds.). New York-Basel-Hong Kong: Marcel Dekker, pp. 99–124.

    Google Scholar 

  • Haigier, C. H. and Benziman, M. (1982) InCellulose and Other Natural Polymer Systems. Biogenesis, Structure and Degradation (R. M. Brown, Jr., ed.). New York-London: Plenum Press, pp. 273–297.

    Google Scholar 

  • Haigler, C. H., White, A. R., Brown, R. M. Jr. and Cooper, K. M. (1982)J. Cell Biol. 94, 64–69.

    Google Scholar 

  • Hayashi, T. (1989) InPlant Fibers. Measuring β-Glucan Deposition in Plant Cell Walls (H. F. Linskens and J. F. Jackson, eds.). Berlin-Heidelberg-New York-London-Paris-Tokyo: Springer-Verlag, pp. 138–160.

    Google Scholar 

  • Hayashi, T., Marsden, M. P. F. and Delmer, D. P. (1987)Plant Physiol. 83, 384–389.

    Google Scholar 

  • Hirai, A., Horii, F. and Kitamaru, R. (1985)Bull. Inst. Chem. Res., Kyoto University 63, 340–359.

    Google Scholar 

  • Idem (1987)Macromolecules 20, 1440–1442.

    Google Scholar 

  • Horii, F. (1989) inNuclear Magnetic Resonance in Agriculture (P. E. Pfeffer and W. V. Gerasimowicz, eds.). Boca Raton, FL: CRC Press, Chapter 10, pp. 311–335.

    Google Scholar 

  • Horii, F., Hirai, A. and Kitamaru, R. (1982)Polymer Bull. (Berlin) 8, 163–170.

    Google Scholar 

  • Idem (1987a)Macromolecules 20, 2117–2120.

    Google Scholar 

  • Horii, F., Yamamoto, H., Hirai, A., Kitamaru, R., Tanahashi, M. and Higuchi, T. (1987b)ibid., 2946–2949.

    Google Scholar 

  • Horii, F., Yamamoto, H. Hirai, A. and Kitamaru, R. (1990) InCellulose: Structural and Functional Aspects (J. K. Kennedy, G. O. Phillips and P. A. Williams, eds.). Chichester, UK: Ellis Horwood, pp. 125–130.

    Google Scholar 

  • Kai, A., Ogusuri, J. and Kobayashi, Y. (1982)Nihon Kagakukaishi 8, 1394–1399.

    Google Scholar 

  • Sarko, A. and Muggli, R. (1974)Macromolecules 7, 486–494.

    Google Scholar 

  • Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. (1990)ibid. 23, 3196–3198.

    Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991)ibid. 24, 4168–4175.

    Google Scholar 

  • Torchia, D. A. (1978)J. Mag. Res. 30, 613–616.

    Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984)Macromolecules 17, 1465–1472.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1993)ibid. 26, 1313–1317.

    Google Scholar 

  • Yamamoto, H., Horii, F. and Odani, H. (1989)ibid. 22, 4130–4132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Horn, F. In Situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I α and I β as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy. Cellulose 1, 57–66 (1994). https://doi.org/10.1007/BF00818798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00818798

Keywords

Navigation