Skip to main content
Log in

A Novel Image Processing Technique for Analyzing Wear Worn Surface Roughness and Corrosion Behavior of Sintered Mg/B4C Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The pure Mg and Mg-B4C composites are produced with dissimilar weight percentages (Mg-5% B4C, Mg-10% B4C, and Mg-15% B4C) using powder metallurgy methods. To find the consequences of B4C in pure Mg, the Vickers micro-hardness, dry sliding wear, 3D roughness profile, and immersion corrosion tests were conducted. To quantify the texture of the composite surface, the local binary co-occurrence pattern quantification technique was used in this analysis and the related texture features were extracted to evaluate the composite surfaces. The wear analysis of Mg-B4C composites was examined in disparate loads of 30, 60, and 90 N with a constant sliding velocity of 2 m/s and in 2000 m constant sliding distance. The changes in wear rate, wear depth, and friction coefficient were compiled and analyzed. It was identified that the wear rate increased with the increment of load. To comprehend the wear mechanism of pure Mg and all Mg-B4C (5–15%) composites, its worn surfaces were subjected to SEM and EDS mapping analyses. The surface roughness of the worn surfaces was explored using a 3D roughness profile test and atomic force microscopy analysis. The obtained results exhibited that the hardness of Mg-B4C composites increased with increasing of B4C weight percentages. The rate of corrosion was discovered using the weight loss method. The corrosion rate decreased to a great extent with the increasing weight percentage of B4C in the Mg matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Turan M E, Sun Y, Akgul Y, Turen Y, and Ahlatci H, J Alloys Compd 724 (2017) 14.

    Article  CAS  Google Scholar 

  2. Selvam B, Marimuthu P, Narayanasamy R, Anandakrishnan V, Tun K S, Gupta M, and Kamaraj M, Mater Des 58 (2014) 475.

    Article  CAS  Google Scholar 

  3. Kawalla R, Lehmann G, Ullmann M, and Vogt H P, Arch Civ Mech Eng 8 (2008) 93.

    Article  Google Scholar 

  4. Navaneetha Krishnan M, Suresh S and Vettivel S C, J Alloys Compd 747 (2018) 324.

    Article  CAS  Google Scholar 

  5. Strzelecka M, Iwaszko J, Malik M, and Tomczyński S, Arch Civ Mech Eng 15 (2015) 854.

    Article  Google Scholar 

  6. Abbasi M, Bagheri B, Dadaei M, Omidvar H R, and Rezaei M, Int J Adv Manuf Technol 77 (2015) 2051.

    Article  Google Scholar 

  7. Turan M E, Sun Y, and Akgul Y, J Alloys Compd 740 (2018) 1149.

    Article  CAS  Google Scholar 

  8. Jiang Q C, Wang H Y, Ma B X, Wang Y, and Zhao F, J Alloys Compd 386 (2005) 177.

    Article  CAS  Google Scholar 

  9. Liu Z, Deng X, Li J, Sun Y, and Ran S, Ceram Int 44 (2018) 21415.

    Article  CAS  Google Scholar 

  10. Toptan F, Rego A, Alves A C, and Guedes A, J Mech Behav Biomed Mater 61 (2016) 164.

    Article  CAS  Google Scholar 

  11. Ozkaya S and Canakci A, Powder Technol 297 (2016) 8.

    Article  CAS  Google Scholar 

  12. Cafri M, Dilman H, Dariel M P, and Frage N, J Eur Ceram Soc 32 (2012) 3477.

    Article  CAS  Google Scholar 

  13. Vettivel S C, Selvakumar N, Narayanasamy R, and Leema N, Mater Des 50 (2013) 977.

    Article  CAS  Google Scholar 

  14. Issa H K, Taherizadeh A, Maleki A, and Ghaei A, Ceram Int 43 (2017) 14582.

    Article  CAS  Google Scholar 

  15. Vettivel S C, Selvakumar N, and Leema N, Mater Des 45 (2013) 323.

    Article  CAS  Google Scholar 

  16. Farvizi M, Javan M K, Akbarpour M R, and Kim H S, Ceram Int 44 (2018)15981.

    Article  CAS  Google Scholar 

  17. Labib F, Ghasemi H M, and Mahmudi R, Wear 348 (2016) 69.

    Article  CAS  Google Scholar 

  18. Pakhira Malay K, Digital Image Processing and Pattern Recognition, PHI Learning Privite Limites (2011)

  19. Jayaraman S, Esakkirajan S, and Veerakumar T, Digital Image Processing, Tata McGraw Hill Education Private Limited, New Delhi (2009)

    Google Scholar 

  20. Kosarevych R Y, Student O, Svirska L, Rusyn B, and Nykyforchyn H, Mater Sci 48 (2013) 474.

    Article  Google Scholar 

  21. Bastidas-Rodriguez M, Prieto-Ortiz F, and Espejo E, Eng Fail Anal 59 (2016) 237.

    Article  CAS  Google Scholar 

  22. Naik D L and Kiran R, Eng Fail Anal 219 (2019) 1.

    Google Scholar 

  23. Pardo A, Merino S, Merino M C, Barroso I, Mohedano M, Arrabal R, and Viejo F, Corros Sci 51 (2009) 841.

    Article  CAS  Google Scholar 

  24. Selvam M, Saminathan K, Siva P, Saha P, and Rajendran V, Mater Chem Phys 172 (2016) 129.

    Article  CAS  Google Scholar 

  25. Wang L, Shinohara T, and Zhang B P, J Solid State Electrochem 14 (2010) 1897.

    Article  CAS  Google Scholar 

  26. Del Campo R, Savoini B, Muñoz A, Monge M A, and Garcés G, J Mech Behav Biomed Mater 39 (2014) 238.

    Article  CAS  Google Scholar 

  27. Vettivel S C, Jegan R, Vignesh J, and Suresh S, Surf Interfaces 6 (2017) 1.

    Article  CAS  Google Scholar 

  28. Kubiak K J, Liskiewicz T W, and Mathia T G, Tribol Int 44 (2011) 1427.

    Article  CAS  Google Scholar 

  29. Yuan C Q, Peng Z, Yan X P, and Zhou X C, Wear 265 (2008) 341.

    Article  CAS  Google Scholar 

  30. Samyn P, Schoukens G, and De Baets P, Wear 270 (2010) 57.

    Article  CAS  Google Scholar 

  31. ASTM B925–08, Standard Practices for Production and Preparation of Powder Metallurgy (PM) Test Specimens, ASTM International, West Conshohocken (2008).

  32. MPIF standard: 42, Determination of Density of Compacted or Sintered Metal Powder products, Metal Powder Industries Federation, Princeton (1977).

  33. ASTM E384-99, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken (1999).

  34. ASTM B962-13, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes Principle, ASTM International, West Conshohocken (2013).

  35. Vettivel S C, Selvakumar N, Leema N, and Haiter Lenin A, Mater Des 56 (2014) 791.

    Article  CAS  Google Scholar 

  36. Wang H Y, Jiang Q C, Wang Y, Ma B X and Zhao F, Mater Lett 58 (2004) 3509.

    Article  CAS  Google Scholar 

  37. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken (2004).

  38. ASTM G99–05, Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus, ASTM International, West Conshohocken (2010).

  39. Guo W, Wang D, Fu Y, Zhang L, and Wang Q, J Mater Eng Perform 25 (2016) 4109.

    Article  CAS  Google Scholar 

  40. Thirumalaikumarasamy D, Shanmugam K and Balasubramanian V, J Magnes Alloy 2 (2014) 1.

    Article  CAS  Google Scholar 

  41. Abd K and Saber E D, J Bio Tribo Corros 1 (2015) 1.

    Article  Google Scholar 

  42. Kumar K K A, Pillai U T S, Pai B C, and Chakraborty M, Wear 303 (2013) 56.

    Article  CAS  Google Scholar 

  43. Suresh S, Shenbaga Vinayaga Moorthi N, Vettivel S C, and Selvakumar N, Mater Des 59 (2014) 383.

  44. Selvakumar N and Vettivel S C, Mater Des 46 (2013) 16.

    Article  CAS  Google Scholar 

  45. Sumathi M, Selvakumar N, and Narayanasamy R, Mater Des 39 (2012) 1.

    Article  CAS  Google Scholar 

  46. Manivannan I, Ranganathan S, Gopalakannan S and Suresh S, Trans Indian Inst Met 71 (2018) 1897.

    Article  CAS  Google Scholar 

  47. Kumar R A, Devaraju A, Arunkumar S, Mater Today Proc 5 (2018) 14244.

    Article  CAS  Google Scholar 

  48. Ojala T, Pietikainen M, and Maenpaa T, IEEE Trans Pattern Anal Mach Intell 24 (2002) 971.

    Article  Google Scholar 

  49. Gebejes A and Huertas R, Texture characterization based on grey-level co-occurrence matrix, in Conference of Informatics and Management Sciences, Slovakia 25 (2013) 375.

  50. Manivannan I, Ranganathan S, Gopalakannan S, Suresh S, Nagakarthigan K, and Jubendradass R, Surf Interfaces 8 (2017) 127.

    Article  CAS  Google Scholar 

  51. Kumar N, Gautam G, Gautam R K, Mohan A, and Mohan S, Tribol Int 97 (2016) 313.

    Article  CAS  Google Scholar 

  52. Agarwal M and Srivastava R, Silicon 11 (2018) 355.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, M.N., Suresh, S., Vettivel, S.C. et al. A Novel Image Processing Technique for Analyzing Wear Worn Surface Roughness and Corrosion Behavior of Sintered Mg/B4C Composites. Trans Indian Inst Met 74, 51–68 (2021). https://doi.org/10.1007/s12666-020-02123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02123-3

Keywords

Navigation