Skip to main content

Advertisement

Log in

Historical review on chitin and chitosan biopolymers

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In 1799, Hatchett decalcified shells of crabs, lobsters, prawns and crayfish with mineral acids, observing that they produced a moderate effervescence and in a short time were found to be soft and plastic of a yellowish color and like a cartilage, which retained the original figure. Although this is the first mention of calcified chitin in invertebrates, the discovery of chitin is usually attributed both to Braconnot in 1811 who discovered chitin from fungi, and to Odier in 1823 who obtained a hornlike material after treatment of cockchafer elytra with potassium hydroxide. Chitin was first named fongine by Braconnot and then chitine by Odier. Children revealed the nitrogenous nature of chitin in 1824. The history of chitosan, the main derivative of chitin, dates back to 1859 with the work of Rouget. The name of chitosan was, however, introduced in 1894 by Hoppe-Seyler. In 1876, Ledderhose hydrolyzed arthropod chitin and discovered glykosamin, the first derivative of chitin. This review describes the 220 years of the development of chitin. I have roughly divided the story into five periods: discovery from 1799 to 1894, a period of confusion and controversy from 1894 to 1930, exploration in 1930–1950, a period of doubt from 1950 to 1970, and finally the period of application from 1970. The different periods are illustrated by examples of published studies, in particular from outstanding scholars who have left their mark on the history of this polysaccharide. Although this historic review is not exhaustive, it highlights the work of researchers who have contributed to the development of our knowledge of chitin throughout the 220 years of its history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(source: Simonin 1856)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Ahmed S, Ikram S (eds) (2017) Chitosan—derivatives, composites and applications. Scrivener Publishing LLC., Wiley, Beverly, p 516. ISBN 978-1-119-36350-7

    Google Scholar 

  • Ahmed S, Annu Ali A, Sheikh J (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862. https://doi.org/10.1016/j.ijbiomac.2018.04.176

    Article  CAS  Google Scholar 

  • Akbar A, Shakeel A (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286. https://doi.org/10.1016/j.ijbiomac.2017.12.078

    Article  CAS  Google Scholar 

  • Aljohani W, Ullah MW, Zhang XL, Yang G (2018) Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 107:261–275. https://doi.org/10.1016/j.ijbiomac.2017.08.171

    Article  CAS  Google Scholar 

  • Amber Jennings J, Bumgardner JD (eds) (2017) Chitosan based biomaterials. Fundamentals. Volume 1, vol 122. Woodhead publishing series in biomaterials. Elsevier, Amsterdam, p 342. ISBN 978-0-08-100230-8

    Google Scholar 

  • Araki T (1895) Ueber das chitosan. Z Physiol Chem 20:498–510

    CAS  Google Scholar 

  • Arnold LB (1939) Fibrous product. US Patent 2,142,986

  • Attwood MM, Zola H (1967) The association between chitin and protein in some chitinous tissues. Comp Biochem Physiol 20:993–998. https://doi.org/10.1016/0010-406X(67)90069-2

    Article  CAS  Google Scholar 

  • Avcu E, Bastan FE, Abdullah HZ, Rehman MAU, Avcu YY, Boccaccini AR (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103:69–108. https://doi.org/10.1016/j.pmatsci.2019.01.001

    Article  CAS  Google Scholar 

  • Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR (2019) Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic pollutants adsorption and removal. J Polym Environ 27:1352–1366. https://doi.org/10.1007/s10924-019-01434-x

    Article  CAS  Google Scholar 

  • Barker SA, Foster AB, Stacey M, Webber JM (1957) Isolation of a homologous series of oligosaccharides from chitin. Chem Ind 7:208–209

    Google Scholar 

  • Barker SA, Foster AB, Stacey M, Webber JM (1958) Properties of oligosaccharides obtained by controlled fragmentation of chitin. J Chem Soc. https://doi.org/10.1039/jr9580002218

    Article  Google Scholar 

  • Baumann E, Kossel A (1895a) Felix Hoppe-Seyler. Ber Dtsch Chem Ges 28:1147–1192. https://doi.org/10.1002/cber.18950280499

    Article  Google Scholar 

  • Baumann E, Kossel A (1895b) Zur erinnerung an Felix Hoppe-Seyler. Z Physiol Chem 21:I–LXI. https://doi.org/10.1515/bchm2.1896.21.1.109

    Article  Google Scholar 

  • Beer FJ (1977) Le professeur Paul Karrer et la liberté de la science. Société Française d’Histoire de la Médicine, séance du 23 avril 1977, pp 221–231

  • Bell DJ (1949) Carbohydrate chemistry. Annu Rev Biochem 18:87–96

    CAS  Google Scholar 

  • BeMiller JN (1965) Chitin. In: Whistler RL (ed) Methods carbohydrate chemistry, vol V. Academic Press, New York, pp 103–105

    Google Scholar 

  • Berezina N (2016) Production and application of chitin. In: Luque R, Xu CP (eds) Biomaterials. Biological production of fuels and chemicals. De Gruyter, Berlin

    Google Scholar 

  • Bergmann M, Zervas L (1931) Synthesen mit glucosamin. Ber Dtsch Chem Ges 64B:975–980

    CAS  Google Scholar 

  • Bergmann M, Zervas L, Silberkweit E (1931a) Über die biose des chitins. Naturwissenschaften 19:20

    CAS  Google Scholar 

  • Bergmann M, Zervas L, Silberkweit E (1931b) Über glucosaminsäure und ihre desaminierung. Ber Dtsch Chem Ges 64:2428–2436. https://doi.org/10.1002/cber.19310640917

    Article  Google Scholar 

  • Bergmann M, Zervas L, Silberkweit E (1931c) Über chitin und chitobiose. Ber Dtsch Chem Ges 64:2436–2440. https://doi.org/10.1002/cber.19310640918

    Article  Google Scholar 

  • Bergmann M, Rinke H, Schleich H (1934) Über dipeptide von epimeren glucosaminsäuren und ihr verhalten gegen dipeptidase. Konfiguration des d-glucosamins. Z Physiol Chem 224:33–39

    CAS  Google Scholar 

  • Bernfeld P (1963) Biogenesis of natural compounds. Pergamon Press, Oxford, p 1224

    Google Scholar 

  • Bierry H, Gouzon B, Magnan C (1939) N-acétylglucosamine et sucre protéidique. C R Soc Biol 130:411–413

    CAS  Google Scholar 

  • Blackwell J (1969) Structure of β-chitin or parallel chain systems of poly-β-(1 → 4)-N-acetyl-d-glucosamine. Biopolymers 7:281–298

    CAS  Google Scholar 

  • Blackwell J, Parker KD, Rudall KM (1965) Chitin in pogonophore tubes. J Mar Biol Assoc UK 45:659–661

    Google Scholar 

  • Blackwell J, Parker KD, Rudall KM (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385. https://doi.org/10.1016/S0022-2836(67)80018-4

    Article  CAS  Google Scholar 

  • Blackwell J, Gardner KH, Kolpak FJ, Minke R, Claffey WB (1980) Refinement of cellulose and chitin structures. In: French AD, Gardner KCH (eds) Fiber diffraction methods, vol 141. ACS symposium series. American Chemical Society, Washington DC, pp 315–334. https://doi.org/10.1021/bk-1980-0141.ch019

    Chapter  Google Scholar 

  • Blumberg R, Southall CL, Van Rensburg NJ, Volckman OB (1951) South African fish products. XXXII. The rock lobster: A study of chitin production from processing wastes. J Sci Food Agric 2:571–576. https://doi.org/10.1002/jsfa.2740021210

    Article  CAS  Google Scholar 

  • Blumenthal HJ, Roseman S (1957) Quantitative estimation of chitin in fungi. J Bacteriol 74:222–224

    CAS  Google Scholar 

  • Bonecco MB, Martínez Sáenz MG, Buffa LM (2017) Chitosan, from residue to industry. In: Masuell M, Renard D (eds) Advances in physicochemical properties of biopolymers. Bentham e-books. Bentham Science Publisher, Sharjah, pp 224–256. ISBN 978-1-68108-545-6

    Google Scholar 

  • Bouligand Y (1965) Sur une architecture torsadée répandue dans de nombreuses cuticles d’arthropodes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences Paris, vol 261. Gauthier-Villars & Cie, éditeur-imprimeur-libraire, Paris, pp 3665–3668

    Google Scholar 

  • Bounoure L (1919) Généralités sur la chitine. In: Houssay F (ed) Aliments, chitine et tube digestif chez les coléoptères Collection de morphologie dynamique. Librairie Scientifique A. Hermann et Fils, Paris, p 294

    Google Scholar 

  • Brach H, von Fürth O (1912) The chemical constitution of chitin. Biochem Z 38:468–491

    CAS  Google Scholar 

  • Braconnot H (1811a) Sur la nature des champignons. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de Chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 265–304

    Google Scholar 

  • Braconnot H (1811b) Des recherches analytiques sur la nature des champignons. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de Chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 272–292

    Google Scholar 

  • Braconnot H (1811c) De la fongine, ou analyse des champignons. Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts, vol LXXIII. Courcier, Imprimeur-Libraire pour les Mathématiques, Paris, pp 130–135

    Google Scholar 

  • Braconnot H (1813) Nouvelles recherches analytiques sur la nature des champignons, pour servir de suite à celles qui ont été insérés dans les tomes LXXIX et LXXX des Annales de chimie. Annales de Chimie. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 237–270

    Google Scholar 

  • Breuer R (1898) Ueber das freie chitosamin. Ber Dtsch Chem Ges 31:2193–2200

    CAS  Google Scholar 

  • Brimacombe JS, Webber JM (1964) Mucopolysaccharides: chemical structure, distribution and isolation, vol 6. BBA Library, Elsevier, Amsterdam, p 181

    Google Scholar 

  • Brock N (1957) Infrared spectra of carbohydrates. Adv Carbohydr Chem 12:13–33. https://doi.org/10.1016/S0096-5332(08)60203-9

    Article  Google Scholar 

  • Broussignac P (1968) Haut polymère naturel connu dans l’industrie: le chitosane. Chimie et Industrie Génie Chimique 99:1241–1247

    CAS  Google Scholar 

  • Bunge G (1912) The glucosides. In: Aders Plimmer RH (trans) Text-book of organic chemistry for medical students. Cornell University Library. Longmans, Green and Co. Lecture IX, pp 122–130

  • Carlström D (1957) The crystal structure of α-chitin (poly-N-acetyl-d-glucosamine). J Biophys Biochem Cytol 3:669–683

    Google Scholar 

  • Carlström D (1962) The polysaccharide chain of chitin. Biochim Biophys Acta 59:361–364. https://doi.org/10.1016/0006-3002(62)90185-3

    Article  Google Scholar 

  • Children JG (1824) Memoir on the chemical composition of the corneous parts of insects; by Augustus Odier. Translated from the original French, with some additional remarks and experiments. Bell T, Children JG, Sowerby JDC, Sowerby GB (eds), London. March, 1824, no I, article XV. Zool J 1:101–115

  • Clark GL (1934) The macromolecule and the micelle as structural units in biological materials with special reference to cellulose. Cold Spring Harb Symp Quant Biol 2:28–38

    CAS  Google Scholar 

  • Clark GL, Smith AF (1936) X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem 40:863–879. https://doi.org/10.1021/j150376a001

    Article  CAS  Google Scholar 

  • Conrad J (1966) Chitin. Encyclopedia of polymer science and technology, vol 3. Interscience, New York, pp 695–705

    Google Scholar 

  • Cox EG, Jeffrey GA (1939) Crystal structure of glucosamine hydrobromide. Nature 143:894–895

    CAS  Google Scholar 

  • Crini G (2019) Historical landmarks in the discovery of chitin. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-16538-3_1

    Chapter  Google Scholar 

  • Crini G, Lichtfouse É (eds) (2019a) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham. ISBN 978-3-030-16537-6

    Google Scholar 

  • Crini G, Lichtfouse É (eds) (2019b) Chitin and chitosan—applications in food, agriculture, pharmacy, medicine and wastewater treatment, vol 35. Sustainable agriculture reviews. Springer, Cham. ISBN 978-3-030-16580-2

    Google Scholar 

  • Crini G, Badot PM, Guibal E (eds) (2009) Chitine et chitosane—du biopolymère à l’application. PUFC, Besançon, p 303

    Google Scholar 

  • Dahn H, Cherbuliez E, Chekhitliez E (1969) Professor Dr. Paul Karrer zum 80. Geburtstag. Helv Chim Acta 52:568A–568C. https://doi.org/10.1002/hlca.19690520302

    Article  Google Scholar 

  • Darmon SE, Rudall KM (1950) Infra-red and X-ray studies of chitin. Discussions Faraday Soc 9:251–260. https://doi.org/10.1039/DF9500900251

    Article  Google Scholar 

  • Davis SP (2011) In: Davis SP (ed) Chitosan: Manufacture, properties, and usage. Biotechnology in agriculture, industry and medicine. Nova Science Publishers Inc, New York, p 507. ISBN 9781617288319

    Google Scholar 

  • de Bary A (1887) Comparative morphology and biology of the fungi, mycetozoa, and bacteria. The Clarendon Press London, Oxford, p 525

    Google Scholar 

  • de Farias BS, Cadaval TRS, Pinto LAD (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenge’s and prospects for food applications. Int J Biol Macromol 123:210–220. https://doi.org/10.1016/j.ijbiomac.2018.11.042

    Article  CAS  Google Scholar 

  • Dima JB, Sequeiros C, Zaritzky N (2017) Chitosan from marine crustaceans: production, characterization and applications. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 39–56. https://doi.org/10.5772/65258

    Chapter  Google Scholar 

  • Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B (2018) Sulfonated and sulfated chitosan for biomedical applications: a review. Carbohydr Polym 202:382–396. https://doi.org/10.1016/j.carbpol.2018.09.011

    Article  CAS  Google Scholar 

  • Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253. https://doi.org/10.1016/S1461-5347(98)00059-5

    Article  CAS  Google Scholar 

  • Dumitriu S (ed) (2005) Polysaccharides—structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, p 1204. ISBN 00-8247-5480-8

    Google Scholar 

  • Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer, New Delhi, p 389. ISBN 9788132234647

    Google Scholar 

  • Dweltz NE (1960) The structure of chitin. Biochim Biophys Acta 44:416–435. https://doi.org/10.1016/0006-3002(60)91597-3

    Article  CAS  Google Scholar 

  • Dweltz NE (1961) The structure of β-chitin. Biochim Biophys Acta 51:283–294. https://doi.org/10.1016/0006-3002(61)90169-X

    Article  CAS  Google Scholar 

  • Dweltz NE, Anand N (1961) Nature of the amino sugar in β-chitin. Biochim Biophys Acta 50:357. https://doi.org/10.1016/0006-3002(61)90335-3

    Article  CAS  Google Scholar 

  • Eugster CH (1972) Das Portrait: Paul Karrer 1889–1971. Chem Unserer Zeit 6:147–153. https://doi.org/10.1002/ciuz.19720060503

    Article  CAS  Google Scholar 

  • Farr WK, Sisson WA (1934) X-ray diffraction patterns of cellulose particles and interpretations of cellulose diffraction data. Contrib Boyce Thompson Inst 6:315–321

    CAS  Google Scholar 

  • Feofilova EP (1984) Biological functions and the practical use of chitin. Prikl Biokhim Mikrobiol 20:147–160

    CAS  Google Scholar 

  • Ferguson AN, O’Neill AG (2011) In: Ferguson AN, O’Neill AG (eds) Focus on chitosan research. Nova Science Publishers, Hauppauge, p 477

    Google Scholar 

  • Fikentscher H (1932) Systematik der cellulose auf grund ihrer viskositat in losung. Cellulosechemie 13:58–64

    Google Scholar 

  • Finney NS, Siegel JS (2008) In memoriam—Albert Hofmann (1906–2008). Chimia 62:444–447. https://doi.org/10.2533/chimia.2008.444

    Article  CAS  Google Scholar 

  • Fischer E (1884) Verbindungen des phenylhydrazins mit den zuckerarten. Ber Dtsch Chem Ges 17:579–584. https://doi.org/10.1002/cber.188401701158

    Article  Google Scholar 

  • Fischer E (1912) Syntheses in the purine and sugar group. Nobel lecture, December 12, 1902, p 15

  • Fischer E, Andreae E (1903) Über chitonsäure und chitarsäure. Ber Dtsch Chem Ges 36:2587–2592

    CAS  Google Scholar 

  • Fischer E, Leuchs H (1902) Synthese des serins, der l-glucosaminsäure und anderer oxyaminosäuren. Ber Dtsch Chem Ges 35:3787–3805

    CAS  Google Scholar 

  • Fischer E, Leuchs H (1903) Synthese das d-glucosamins. Ber Dtsch Chem Ges 36:24–29

    CAS  Google Scholar 

  • Foster AB, Hackman RH (1957) Application of ethylenediaminetetra-acetic acid in the isolation of crustacean chitin. Nature 180:40–41

    CAS  Google Scholar 

  • Foster AB, Stacey M (1958) The aminosugars and chitin. In: Ruhland W (ed) Encyclopedia of plant physiology. Formation–storage–mobilization and transformation of carbohydrates, vol 6. Book series 532. Springer, Berlin, pp 518–529. https://doi.org/10.1007/978-3-642-94731-5_21

    Chapter  Google Scholar 

  • Foster AB, Webber JM (1961) Chitin. Adv Carbohydr Chem 15:371–393. https://doi.org/10.1016/S0096-5332(08)60192-7

    Article  CAS  Google Scholar 

  • Fraenkel S, Kelly (1903) Sur la constitution de la chitine. Bulletin de la Société Chimique de Paris, vol XXX. Troisième série. Masson et Cie, éditeurs. Libraires de l’Académie de Médecine, Paris, p 372

    Google Scholar 

  • Fränkel S (1898) Über die reindarstellung der sogenannten kohlehydrat-gruppe des eiweisses. Monatsh Chem Verw Teile Anderer Wiss 19:747–769. https://doi.org/10.1007/BF01517443

    Article  Google Scholar 

  • Fränkel S, Jellinek C (1927) Limulus Polyphemus. Biochem Z 185:384–388

    Google Scholar 

  • Fränkel S, Kelly A (1901a) Beiträge zur constitution des chitins. Das vorkommen von chitin und seine verwertung als systematisch- phylogenetisches merkmal im pflanzenreich. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Mathematisch Naturwissenchaftliche Klasse Abt IIB, vol 110. Gerold, Wien, pp 1147–1156

    Google Scholar 

  • Fränkel S, Kelly A (1901b) Beiträge zur constitution des chitins. Monatsh Chem Verw Teile Anderer Wiss 23:123–132. https://doi.org/10.1007/BF01525858

    Article  Google Scholar 

  • Frémy E (1855) Recherches chimiques sur les os. Ann Chim Phys 3ème Série XLIII:93–96

    Google Scholar 

  • Freudenberg K (1967) Emil Fischer and his contribution to carbohydrate chemistry. Adv Carbohydr Chem 21:1–38. https://doi.org/10.1016/S0096-5332(08)60314-8

    Article  Google Scholar 

  • Freudenberg K, Eichel H (1935) Über spezifische kohlenhydrate der blutgruppen. II. Liebigs Ann 518:97–102. https://doi.org/10.1002/jlac.19355180106

    Article  CAS  Google Scholar 

  • Frey R (1950) Chitin und zellulose in Pilzzell-wänden. Ber Schweizerischen Botanischen Ges 60:199–230

    CAS  Google Scholar 

  • Friedman S (1970) Metabolism of carbohydrates in insects. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 5. Academic Press, New York

    Google Scholar 

  • Fruton JS (1990) Felix Hoppe-Seyler and Willy Kühne. Contrasts in scientific style research groups in the chemical and biochemical sciences, vol 191. Memoirs of the American Philosophical Society, Philadelphia, pp 72–117; 308–321. ISBN 0-87169-191-4

    Google Scholar 

  • Gallo M, Naviglio D, Caruso AA, Ferrara L (2016) Applications of chitosan as a functional food. Novel approaches of nanotechnology in food, vol 1. Academic Press, New York, pp 425–464. https://doi.org/10.1016/b978-0-12-804308-0.00013-3

    Chapter  Google Scholar 

  • Gardner KH, Blackwell J (1975) Refinement of the structure of β-chitin. Biopolymers 14:1581–1595. https://doi.org/10.1002/bip.1975.360140804

    Article  CAS  Google Scholar 

  • Giles CH, Hassan ASA, Laidlaw M, Subramanian RVR (1958) Adsorption at organic surfaces. III. Some observations on the constitution of chitin and on its adsorption of inorganic and organic acids from aqueous solution. J Soc Dyers Colourists 74:647–654

    CAS  Google Scholar 

  • Gilson E (1893) La cristallisation de la cellulose et la composition chimique de la membrane végétale. La Cellule 9:397–441

    Google Scholar 

  • Gilson E (1894a) Recherches chimiques sur la membrane cellulaire des champignons. Bull Soc Chim France 3:1099–1102

    Google Scholar 

  • Gilson E (1894b) Recherches chimiques sur la membrane cellulaire des champignons. La Cellule XI(1):7

    Google Scholar 

  • Gilson E (1894c) Note sur le corps azote de la membrane cellulaire des champignons. Bull Soc Chim Paris 1894(23):590

    Google Scholar 

  • Gilson E (1895) Das chitin und die membranen der pilzzellen. Ber Dtsch Chem Ges 28:821–822. https://doi.org/10.1002/cber.189502801185

    Article  CAS  Google Scholar 

  • Gonell HW (1926) Röentenographische studien an chitin. Hoppe-Seylers Z Physiol Chem 152:18–30. https://doi.org/10.1515/bchm2.1926.152.1-3.18

    Article  CAS  Google Scholar 

  • Good JM, Gregory O, Bosworth N (1813) Pantologia: a new cyclopaedia, vol 3. Kearsley, London

    Google Scholar 

  • Goosen MFA (ed) (1997) Applications of chitin and chitosan. CRC Press LLC., Boca Raton, p 336

    Google Scholar 

  • Gréhant N (1904a) Charles Rouget, notice nécrologique. Nouv Arch Mus Hist Nat Sixième:I–V

    Google Scholar 

  • Gréhant N (1904b) Liste des ouvrages et mémoires publiés par Ch. Rouget. Nouv Arch Mus Hist Nat Sixième:VI–XII

    Google Scholar 

  • Griffiths AB (1892a) La pupine, nouvelle substance animale. C R Acad Sci 115:320–321

    Google Scholar 

  • Griffiths AB (1892b) La pupine, nouvelle substance animale. Bull Acad R Belg 24:592

    Google Scholar 

  • Hackman RH (1953a) Chemistry of insect cuticle. 1. The water-soluble proteins. Biochem J 54:362–367

    CAS  Google Scholar 

  • Hackman RH (1953b) Chemistry of insect cuticle. 3. Hardening and darkening of the cuticle. Biochem J 54:371–377

    CAS  Google Scholar 

  • Hackman RH (1954) Studies on chitin. I. Enzymatic degradation of chitin and chitin esters. Austral J Biol Sci 7:168–178

    CAS  Google Scholar 

  • Hackman RH (1959) Biochemistry of the insect cuticle. In: Levenbook L (ed) Proceedings of the 4th international congress biochemistry held in Vienna, September 1–6, 1958, Pergamon Press, vol 12, pp 48–62

  • Hackman RH (1960) Studies on chitin. IV. The occurrence of complexes in which chitin and protein are covalently linked. Austral J Biol Sci 13:568–577

    CAS  Google Scholar 

  • Hackman RH (1962) Studies on chitin. V. The action of mineral acids on chitin. Austral J Biol Sci 15:526–537

    CAS  Google Scholar 

  • Hagenbach D, Werthmüller L, Grof S (2013) Mystic chemist: the life of Albert Hofmann and his discovery of LSD (first English edition). Synergetic Press, Santa Fe, p 16. ISBN 978-0-907791-46-1

    Google Scholar 

  • Hamlin ML (1911) A tetra-acetyl aminoglucoside. J Am Chem Soc 33:766–769. https://doi.org/10.1021/ja02218a016

    Article  CAS  Google Scholar 

  • Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877. https://doi.org/10.1111/1541-4337.12343

    Article  Google Scholar 

  • Hatchett C (1799) Experiments and observations on shell and bone. In: Bowyer W, Nichols J (eds) Philos Trans R Soc Lond. Royal Society, London, June 13, 1799, vol 89, no XVIII, pp 315–334

  • Hatchett C (1800) Experiments and obfervations on shell and bone. In: Nicholson W (ed) J Nat Philos Chem Arts. London, February 1800, vol III, no VI, pp 500–506

  • Haworth WN (1946) The structure, function and synthesis of polysaccharides. Proc R Soc Lond Ser A 186:1–19

    CAS  Google Scholar 

  • Haworth WN, Lake WHG, Peat S (1939) The configuration of glucosamine (chitosamine). J Chem Soc. https://doi.org/10.1039/JR9390000271

    Article  Google Scholar 

  • Heckert WW (1937) Textile. US Patent 2,099,363

  • Helferich B (1969) Max Bergmann 1886–1944. Chem Ber 102:I–XXVI. https://doi.org/10.1002/cber.19691020147

    Article  Google Scholar 

  • Herzog RO (1924) Über den feinbau der faserstoffe. Naturwissenschaften 12:955–960. https://doi.org/10.1007/BF01507215

    Article  CAS  Google Scholar 

  • Heyn ANJ (1936a) X ray investigations on the molecular structure of chitin in cell walls (preliminary note). Proc Kon Akad Wetensch Amsterdam 39:132–135

    CAS  Google Scholar 

  • Heyn ANJ (1936b) Molecular structure of chitin in plant cell-walls. Nature 137:277–278. https://doi.org/10.1038/137277d0

    Article  Google Scholar 

  • Hirano S (1989) Production and application of chitin and chitosan in Japan. In: Skjåk-Braek G, Anthonsen T, Sandford PA (eds) Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. Proceedings from the 4th international conference on chitin and chitosan held in Trondheim, Norway, August 22–24, 1988, Elsevier Applied Science, New York, pp 37–43

  • Hofmann A (1929) Über den enzymatischen abbau des chitins und chitosans. Dissertation, Universität Zürich, p 50

  • Honke L, Scheer BT (1970) Carbohydrate metabolism in Crustacea. In: Florkin M, Scheer B (eds) Chemical zoology, vol 5. Academic Press, New York

    Google Scholar 

  • Hoppe-Seyler F (1894) Ueber chitin und cellulose. Ber Dtsch Chem Ges 27:3329–3331. https://doi.org/10.1002/cber.189402703135

    Article  CAS  Google Scholar 

  • Hoppe-Seyler F (1895) Ueber umwandlungen des chitins. Ber Dtsch Chem Ges 28:82. https://doi.org/10.1002/cber.18950280124

    Article  CAS  Google Scholar 

  • Horowitz ST, Roseman S, Blumenthal HJ (1957) The preparation of glucosamine oligosaccharides. 1. Separation. J Am Chem Soc 79:5046–5049. https://doi.org/10.1021/ja01575a059

    Article  CAS  Google Scholar 

  • Hu ZY, Ganzle MG (2019) Challenges and opportunities related to the use of chitosan as a food preservative. J Polym Microbiol 126:1318–1331. https://doi.org/10.1111/jam.14131

    Article  CAS  Google Scholar 

  • Ilkewitsch K (1908) Fungal chitin named mycetin. Bulletin de l’Académie Impériale des Sciences de St. Pétersbourg, pp 571–588

  • Irvine JC (1909) A polarimetric method of identifying chitin. J Chem Soc 95:564–570. https://doi.org/10.1039/ct9099500564

    Article  CAS  Google Scholar 

  • Irvine JC, Hynd A (1912) The conversion of d-glucosamine into d-glucose. J Chem Soc 101:1128–1146

    CAS  Google Scholar 

  • Irvine JC, Hynd A (1914) The conversion of d-glucosamine into d-mannose. J Chem Soc 105:698–710

    CAS  Google Scholar 

  • Irvine JC, McNicoll D, Hynd A (1911) New derivatives of d-glucosamine. J Chem Soc 99:250–261

    CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Muzzarelli RAA (2011) In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I. Springer, Heidelberg, p 236. ISBN 978-3-642-23113-1

    Google Scholar 

  • Jeanloz R (1950) Structure de la chitine et de l’acide hyaluronique et oxydation des sucres aminés par l’ion périodate. Experentia 6:52–53. https://doi.org/10.1007/BF02174813

    Article  Google Scholar 

  • Jeanloz RW (1956) Kurt Heinrich Meyer: 1883–1952. Adv Carbohydr Chem 11:XIII–XVIII. https://doi.org/10.1016/s0096-5332(08)60114-9

    Article  Google Scholar 

  • Jeanloz R, Forchielli E (1950) Recherches sur l’acide hyaluronique et les substances apparentées III. La détermination de la structure de la chitine par oxydation avec l’ion periodate. Helv Chim Acta 33:1690–1697

    CAS  Google Scholar 

  • Jeanloz R, Forchielli E (1951) Studies on hyaluronic acid and related substances. 2. Periodate oxidation of glucosamine and derivatives. J Biol Chem 188:361–369

    CAS  Google Scholar 

  • Jeuniaux Ch (1963) Chitine et chitinolyse, un chapitre de la biologie moléculaire. Masson, Paris

    Google Scholar 

  • Jeuniaux Ch (1971) Chitinous structures. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26C. Elsevier, Amsterdam, pp 595–632

    Google Scholar 

  • Johnson WB (1803) History of the progress and present state of animal chemistry. New York Public Library. Printed for Johnson J, St Paul’s Churchyard, vol 1, p 411

  • Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer—review. Carbohydr Polym 207:588–600. https://doi.org/10.1016/j.carbpol.2018.12.011

    Article  CAS  Google Scholar 

  • Karrer P (1930) Der enzymatische abbau von nativer und umgefällter zellulose, von kunstseiden und von chitin. Kolloid Z 52:304–319. https://doi.org/10.1007/BF01473951

    Article  CAS  Google Scholar 

  • Karrer P, Hofmann A (1929) Polysaccharide XXXIX. Über den enzymatischen abbau von chitin und chitosan I. Helv Chim Acta 12:616–637. https://doi.org/10.1002/hlca.19290120167

    Article  CAS  Google Scholar 

  • Karrer P, Smirnoff AP (1922) Polysaccharide XVII. Beitrag zur kenntnis des chitins. Helv Chim Acta 5:832–852. https://doi.org/10.1002/hlca.19220050604

    Article  CAS  Google Scholar 

  • Karrer P, von François G (1929) Polysaccharide XXXX. Über den enzymatischen abbau von chitin II. Helv Chim Acta 12:986–988. https://doi.org/10.1002/hlca.192901201104

    Article  Google Scholar 

  • Karrer P, White SM (1930) Polysaccharide XLIV. Weitere beiträge zur kenntnis des chitins. Helv Chim Acta 13:1105–1113. https://doi.org/10.1002/hlca.19300130536

    Article  CAS  Google Scholar 

  • Karrer P, Schnider O, Smirnoff AP (1924) Polysaccharide XXIX. Zur kenntnis des chitins II und konfiguration des glucosamins. Helv Chim Acta 7:1039–1045

    CAS  Google Scholar 

  • Karrer P, Koenig H, Usteri E (1943) Zur kenntnis blutgerinnungshemmender polysaccharid-poly-schwefelsäure-ester und ähnilicher verbindungen. Helv Chim Acta 26:1296–1315. https://doi.org/10.1002/hlca.19430260504

    Article  CAS  Google Scholar 

  • Katsoyannis PG (1973) The scientific work of Leonidas Zervas. In: Katsoyannis PG (ed) The chemistry of polypeptides. Springer, Boston, pp 1–20. https://doi.org/10.1007/978-1-4613-4571-8_1

    Chapter  Google Scholar 

  • Kent PW (1964) Chitin and mucosubstances. In: Florkin M, Mason HS (eds) Comparative biochemistry. A comprehensive treatise, vol VII. Academic Press, New York, pp 93–136. https://doi.org/10.1016/b978-0-12-395548-7.50009-x

    Chapter  Google Scholar 

  • Kent PW, Whitehouse MW (1955) Biochemistry of the amino-sugars. Butterworths Scientific Publications, London, p 311p

    Google Scholar 

  • Khor E (ed) (2001) Chitin: fulfilling a biomaterials promise, 1st edn. Elsevier, Amsterdam, p 148. https://doi.org/10.1016/b978-008044018-7/50001-4

    Book  Google Scholar 

  • Khouvine Y (1932) Étude aux rayons X de la chitine d’Aspergillus niger, de Psalliota campestris et d’Armillaria mellea. C R Séances Hebd Acad Sci 195:396–397

    CAS  Google Scholar 

  • Kim SK (ed) (2011) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, p 666. ISBN 9781439816042

    Google Scholar 

  • Kim SK (ed) (2014) Chitin and chitosan derivatives—advances in drug discovery and developments. CRC Press Taylor & Francis Group LLC., Boca Raton, p 511. ISBN 978-1-4665-6628-6

    Google Scholar 

  • Krajewska B (1991) Chitin and its derivatives as supports for immobilization of enzymes. Acta Biotechnol 11:269–277. https://doi.org/10.1002/abio.370110319

    Article  CAS  Google Scholar 

  • Kravanja G, Primozic M, Knez Z, Leitgeb M (2019) Chitosan-based (nano)materials for novel biomedical applications. Molecules. https://doi.org/10.3390/molecules24101960

    Article  Google Scholar 

  • Kreger DR (1954) Observations on cell walls of yeats and some other fungi by X-ray diffraction and solubility tests. Biochim Biophys Acta 13:1–9

    CAS  Google Scholar 

  • Larson LL (1939) Manufacture of paper. US Patent 2,184,307

  • Larson LL (1940) Manufacture of paper. US Patent 2,216,845

  • Lassaigne JL (1843) Mémoire sur un procédé simple pour constater la présence d’azote dans des quantités minimes de matière organique. C R Séances Hebd Acad Sci 16:387–391

    Google Scholar 

  • Latreille PA (1831) Cours d’entomologie ou l’histoire naturelle des crustacés, des arachnides, des myriapodes et des insectes. Imprimerie de Crapelet, Paris, p 669

    Google Scholar 

  • Leboucq H (1913) E. Gilson (1890). Notices biographiques, vol II. Université de Gand. Maison d’édition I. Vanderpoorten, Ghent, pp 575–577

    Google Scholar 

  • Ledderhose G (1876) Ueber salzsaures glycosamin. Ber Dtsch Chem Ges 9:1200–1201. https://doi.org/10.1002/cber.18760090251

    Article  Google Scholar 

  • Ledderhose G (1878) Ueber chitin und seine spaltungsprodukte. Z Physiol Chem 2:213–227

    Google Scholar 

  • Ledderhose G (1880a) Ueber Glykosamin. Dissertation der medicinischen Facultät der Kaiser Wilhelms, Universität Strassburg zur Erlangung der Doctorwürde, p 24

  • Ledderhose G (1880b) Ueber glykosamin. Z Physiol Chem 4:139–159

    Google Scholar 

  • Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 184:243–259. https://doi.org/10.1016/j.carbpol.2017.12.067

    Article  CAS  Google Scholar 

  • Lichtenthaler FW (2002) Emil Fischer, his personality, his achievements, and his scientific progeny. Eur J Org Chem 2002:4095–4122

    Google Scholar 

  • Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6:58–59

    Google Scholar 

  • Löwy E (1909) Über kristallinisches chitosansulfat. Biochem Z 23:47–60

    Google Scholar 

  • Lubs HA (1937) Paper. US Patent 2,085,163

  • Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers. https://doi.org/10.3390/polym11050839

    Article  Google Scholar 

  • Marasco M (1938) Antistatic photographic film. US Patent 2,139,689

  • Marasco M (1939) Photographic film. US Patent 2,182,814

  • Marchessault RH, Sarko A (1967) X-ray structure of polysaccharides. Adv Carbohydr Chem 22:421–482. https://doi.org/10.1016/S0096-5332(08)60156-3

    Article  CAS  Google Scholar 

  • Mark H (1943) The investigation of high polymers with X-rays. Chemistry of large molecules. Interscience, New York, pp 33–71

    Google Scholar 

  • Mark H (1952) In memoriam—Professor K. H. Meyer. J Polym Sci 9:193–195. https://doi.org/10.1002/pol.1952.120090301

    Article  CAS  Google Scholar 

  • Maxwell RW (1939) Adhesive. US Patent 2,182,524

  • Meyer KH (1942) Chitin. Natural and synthetic high polymers. Part F: substances related to or associated with cellulose, 1st edn. Interscience Publishers Inc, New York, pp 381–386

    Google Scholar 

  • Meyer KH (1950) Chitin and other polysaccharides containing amino sugars. Natural and synthetic high polymers, 2nd edn. Interscience Publishers Inc, New York, pp 448–455

    Google Scholar 

  • Meyer KH, Mark H (1928) Über den aufbau des chitins. Ber Dtsch Chem Ges 61:1936–1939. https://doi.org/10.1002/cber.19280610862

    Article  Google Scholar 

  • Meyer KH, Pankow GW (1935) Sur la constitution et la structure de la chitine. Helv Chim Acta 18:589–598. https://doi.org/10.1002/hlca.19350180177

    Article  CAS  Google Scholar 

  • Meyer KH, Wehrli H (1937) Comparaison chimique de la chitine et de la cellulose. Helv Chim Acta 20:353–362. https://doi.org/10.1002/hlca.19370200156

    Article  CAS  Google Scholar 

  • Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120:167–181

    CAS  Google Scholar 

  • Molnar A (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Lett 388:126–171. https://doi.org/10.1016/j.ccr.2019.02.018

    Article  CAS  Google Scholar 

  • Morin-Crini N, Lichtfouse É, Torri G, Crini G (2019) Fundamentals and applications of chitosan. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-16538-3_2

    Chapter  Google Scholar 

  • Muzzarelli RAA (1973) Natural chelating polymers. Alginic acid, chitin and chitosan. Pergamon Press, Oxford

    Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon Press Ltd., Oxford. ISBN: 9780080203676

    Google Scholar 

  • Nechita P (2017) Applications of chitosan in wastewater treatment. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 209–228. https://doi.org/10.5772/65289

    Chapter  Google Scholar 

  • Neuberger A, Pitt Rivers R (1939) Preparation and configurative relationships of methylglucosaminides. J Chem Soc. https://doi.org/10.1039/jr9390000122

    Article  Google Scholar 

  • Neville AC (1967) Chitin orientation in cuticle and its control. Adv Insect Physiol 4:213–286. https://doi.org/10.1016/S0065-2806(08)60209-X

    Article  CAS  Google Scholar 

  • Neville AC (1970) Cuticle ultrastructure in relation to the whole insect. In: Neville AC (ed) Insect ultrastructure. Blackwell, Oxford, pp 17–39

    Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin, p 448. ISBN 978-3-642-80912-5

    Google Scholar 

  • Neville AC, Luke BM (1969a) Molecular architecture of adult locust cuticle at the electron microscope level. Tissue Cell 1:355–363

    CAS  Google Scholar 

  • Neville AC, Luke BM (1969b) A two-system model for chitin–protein complexes in insect cuticles. Tissue Cell 1:689–707. https://doi.org/10.1016/S0040-8166(69)80041-8

    Article  CAS  Google Scholar 

  • Neville AC, Parry DAD, Woodhead-Galloway J (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21:73–82

    CAS  Google Scholar 

  • Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843. https://doi.org/10.1021/acs.chemrev.6b00275

    Article  CAS  Google Scholar 

  • Noyer-Weidner M, Schaffner W (1995) Felix Hoppe-Seyler (1825–1895). A pioneer of biochemistry and molecular biology. Biol Chem Hoppe-Seyler 376:447–448

    CAS  Google Scholar 

  • Odier A (1823) Mémoire sur la composition chimique des parties cornées des insectes. Mémoires de la Société d’Histoire Naturelle de Paris, vol Premier. Baudouin Frères Libraires-Éditeurs, Paris, pp 29–42

    Google Scholar 

  • Orr SFD (1954) Infra-red spectroscopic studies of some polysaccharides. Biochim Biophys Acta 14:173–181

    CAS  Google Scholar 

  • Packard AS (1886) On the nature and origin of the so-called spiral thread of tracheae. Am Nat 20:438–442

    Google Scholar 

  • Packard AS (1898) A textbook of entomology. MacMillan, New-York, p 729

    Google Scholar 

  • Pakdel PR, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

    Article  CAS  Google Scholar 

  • Payen A (1843) Propriétés distinctives entre les membranes végétales et les enveloppes des insectes et des crustacés. C R Séances Acad Sci 17:227–231

    Google Scholar 

  • Pearson FG, Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci 43:101–116. https://doi.org/10.1002/pol.1960.1204314109

    Article  Google Scholar 

  • Pellá MCG, Lima-Tenorio MK, Tenorio-Neto ET, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245. https://doi.org/10.1016/j.carbpol.2018.05.033

    Article  CAS  Google Scholar 

  • Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181:1314–1337. https://doi.org/10.1007/s12010-0162286-2

    Article  CAS  Google Scholar 

  • Picken LER (1940) The fine structure of biological systems. Biol Rev 15:133–167. https://doi.org/10.1111/j.1469-185X.1940.tb00752.x

    Article  CAS  Google Scholar 

  • Picken LER (1960) The organization of cells. Clarendon Press, Oxford University, London, p 629

    Google Scholar 

  • Plisko EA, Baranova VN, Nud’ga LA (1974) Electrical insulating paper. USSR Patent 428.053

  • Purchase ER, Braun CE (1946) d-glucosamine hydrochloride. Org Synth 26:36–37

    CAS  Google Scholar 

  • Rajoka MSR, Zhao LQ, Mehwish HM, Wu YG, Mahmood S (2019) Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl Microbiol Biotechnol 103:1557–1571. https://doi.org/10.1007/s00253-018-9550-z

    Article  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan C (1962) The structure of chitin. Biochim Biophys Acta 63:307–309. https://doi.org/10.1016/0006-3002(62)90684-4

    Article  CAS  Google Scholar 

  • Ramakrishnan C, Prasad N (1972) Rigid-body refinement and conformation of α-chitin. Biochim Biophys Acta 261:123–135. https://doi.org/10.1016/0304-4165(72)90321-2

    Article  CAS  Google Scholar 

  • Reese ET (1963) Advances in enzymic hydrolysis of cellulose and related materials. Pergamon Press, Oxford, p 302. https://doi.org/10.1016/c2013-0-01718-5

    Book  Google Scholar 

  • Richards AG (1947a) The organization of arthropod cuticle. A modified interpretation. Science 105:170–171. https://doi.org/10.1126/science.105.2720.170

    Article  CAS  Google Scholar 

  • Richards AG (1947b) Studies on arthropod cuticle. 1. The distribution of chitin in lepidopterous scales, and its bearing on the interpretation of arthropod cuticle. Ann Entomol Soc Am 40:227–240

    CAS  Google Scholar 

  • Richards AG (1949) Studies on arthropod cuticle. 3. The chitin of Limulus. Science 109:591–592. https://doi.org/10.1126/science.109.2841.591

    Article  CAS  Google Scholar 

  • Richards AG (1951) The integument of arthropods. The chemical components and their properties, the anatomy and development, and the permeability. University of Minnesota Press, Minneapolis, p 411

    Google Scholar 

  • Richards AG (1952) Studies on arthropod cuticle. VII. Patent and masked carbohydrate in the epicuticle of insects. Science 115:206–208

    CAS  Google Scholar 

  • Richards AG (1958) The cuticle of arthropods. Ergebnisse Biol 20:1–26. https://doi.org/10.1007/978-3-642-51754-9_1

    Article  Google Scholar 

  • Richards AG, Anderson TF (1942) Electron microscope studies of insect cuticle, with a discussion of the application of electron optics to this problem. J Morphol 71:135–184

    Google Scholar 

  • Richards AG, Cutkomp LK (1946) Correlation between the possession of a chitinous cuticle and sensitivity to DDT. Biol Bull 90:97–108. https://doi.org/10.2307/1538214

    Article  CAS  Google Scholar 

  • Richards AG, Korda FH (1948) Studies on arthropod cuticle. 2. Electron microscope studies of extracted cuticles. Biol Bull 94:212–235. https://doi.org/10.2307/1538249

    Article  CAS  Google Scholar 

  • Richards AG, Pipa RL (1958) Studies on the molecular organization of insect cuticle. Smithsonian miscellaneous collections, vol 137. Smithsonian Institution, Washington, DC, pp 247–262

    Google Scholar 

  • Rigby GW (1936a) Carbohydrate derivatives and process of making the same. US Patent 2,033,787

  • Rigby GW (1936b) Substantially undegraded deacetylated chitin and process for producing the same. US Patent 2,040,879

  • Rigby GW (1936c) Process for the preparation of films and filaments and products thereof. US Patent 2,040,880

  • Rigby GW (1936d) Emulsion. US Patent 2,047,225

  • Rigby GW (1936e) Chemical process and chemical compounds derived therefrom. US Patent 2,047,226

  • Rigby GW (1937) Chemical products and process of preparing the same. US Patent 2,072,771

  • Roberts GAF (ed) (1992) Chitin chemistry, 1st edn. Macmillan Press, London. ISBN 9781349115471

    Google Scholar 

  • Roche J (1972) Eloge—Paul Karrer (1889–1971). Bull Acad Natl Méd 156(4–5):89–92

    CAS  Google Scholar 

  • Rouget Ch (1859) Des substances amylacées dans les tissus des animaux, spécialement les articulés (chitine). C R Hebd Séances Acad Sci 48:792–795

    Google Scholar 

  • Rudall KM (1955) The distribution of collagen and chitin. Symp Soc Exp Biol 9:49–71

    Google Scholar 

  • Rudall KM (1963) The chitin/protein complexes of insect cuticles. Advances in insect physiology, vol 1. Academic Press, London, pp 257–313. https://doi.org/10.1016/s0065-2806(08)60177-0

    Chapter  Google Scholar 

  • Rudall KM (1965) Skeletal structure in insects. In: Goodwin TW (ed) aspects of insect biochemistry. Academic Press, London, pp 83–92

    Google Scholar 

  • Rudall KM (1967) Conformation in chitin–protein complexes. In: Ramachadran GN (ed) Conformation of biopolymers. Papers read at an international symposium held at the University of Madras, 18–21 January 1967, Academic Press, London, vol 2, pp 751–765. https://doi.org/10.1016/b978-1-4832-2843-3.50026-1

    Google Scholar 

  • Rudall KM (1969) Chitin and its association with other molecules. J Polym Sci Part C Polym Symp 28:83–102. https://doi.org/10.1002/polc.5070280110

    Article  Google Scholar 

  • Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 49:597–636. https://doi.org/10.1111/j.1469-185X.1973.tb01570.x

    Article  Google Scholar 

  • Sarmento B, das Neves J (2012) In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, Hoboken, p 600. ISBN 9781119964070

    Google Scholar 

  • Sashiwa H, Harding D (eds) (2015) Advances in marine chitin and chitosan. MDPI AD, Basel, p 484

    Google Scholar 

  • Schmidt C (1845) Zur vergleichenden physiologie der wirbellosen thiere Eine physiologisch-chemische untersuchung, vol LIV. Annalen der Chemie und Pharmacie Bd. Vieweg u. Sohn, Braunschweig, pp 298–311

    Google Scholar 

  • Schmiedeberg O (1891) Ueber die chemische zusammensetzung des knorpels. Arch Exp Pathol Pharmakol 28:355–404

    Google Scholar 

  • Schorigin P, Hait E (1934) Über die nitrierung von chitin. Ber Dtsch Chem Ges 67:1712–1714. https://doi.org/10.1002/cber.19340671013

    Article  Google Scholar 

  • Schorigin P, Hait E (1935) Über die acetylierung des chitins (Vorläufig. Mitteil.). Ber Dtsch Chem Ges 68:971–973

    Google Scholar 

  • Schorigin P, Makarowa-Semljanskaja NN (1935a) Über die desaminierung von chitin und glucosamin. Ber Dtsch Chem Ges 68:965–969. https://doi.org/10.1002/cber.19350680545

    Article  Google Scholar 

  • Schorigin P, Makarowa-Semljanskaja NN (1935b) Über die methyläther des chitins (Vorläufig. Mitteil.). Ber Dtsch Chem Ges 68:969–971. https://doi.org/10.1002/cber.19350680546

    Article  Google Scholar 

  • Sharnshina JL, Berton P, Rogers RD (2019) Advances in functional chitin materials: a review. ACS Sustain Chem Eng 7:6444–6457. https://doi.org/10.1021/acssuschemeng.8b06372

    Article  CAS  Google Scholar 

  • Simonin F (1856) Notice biographique sur M. Henri Braconnot. C R Travaux Soc Méd Nancy 1834–1855:51–79

    Google Scholar 

  • Slagel R, Sinkovitz G (1973a) Paper products of improved dry strength. US Patent 3.709.780

  • Slagel R, Sinkovitz G (1973b) Chitosan graft copolymers for making paper products of improved dry strength. US Patent 3.770.673

  • Smedley E, Rose HJ, Rose HJ (1845) Encyclopædia_Metropolitana. Volume VIII. General view of the animal kingdom, and of the circumstances distinguishing it from the vegetable kingdom. Section I. William Clowes & Sons, London, pp 215–217

    Google Scholar 

  • Spedding H (1964) Infrared spectroscopy and carbohydrate chemistry. Adv Carbohydr Chem 19:23–49. https://doi.org/10.1016/S0096-5332(08)60278-7

    Article  CAS  Google Scholar 

  • Städeler G (1859) Untersuchungen über das fibroïn, spongin und chitin, nebst bemerkungen über den thierischen schleim. Justus Liebigs Ann Chem 111:12–28. https://doi.org/10.1002/jlac.18591110103

    Article  Google Scholar 

  • Straus-Durckeim H (1828) Considérations générales sur l’anatomie comparé des animaux articulés. Levrault FG, Strasbourg, p 463

    Google Scholar 

  • Tiemann F (1884) Einiges über den abbau von salzsaurem glucosamin. Ber Dtsch Chem Ges 17:241–251. https://doi.org/10.1002/cber.18840170174

    Article  Google Scholar 

  • Tiemann F, Landolt RH (1886) Specifisches drehungsvermögen und krystallform des bromwasserstoffsauren glucosamins. Ber Dtsch Chem Ges 19:155–157. https://doi.org/10.1002/cber.18860190143

    Article  Google Scholar 

  • Tóth G, Zechmeister L (1939) Chitin content of the mandible of the snail (Helix pomatia). Nature 144:1049. https://doi.org/10.1038/1441049c0

    Article  Google Scholar 

  • Tracey MV (1955) Chitin. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol II. Springer, Berlin, pp 264–274

    Google Scholar 

  • Tracey MV (1957) Chitin. Rev Pure Appl Chem 7:1–14

    CAS  Google Scholar 

  • Tsugita T (1990) Chitin/chitosan and their application. In: Voigt MN, Botta JR (eds) Advances in fisheries technology and biotechnology for increased profitability. Technomic Publisher Inc., Basel, pp 287–298

    Google Scholar 

  • van Iterson G, Jr Meyer KH, Lotmar W (1936) Über den feinbau des pflanzlichen chitins. Recl Trav Chim Pays-Bas 55:61–63

    Google Scholar 

  • Wettstein A (1972) Paul Karrer 1889–1971. Helv Chim Acta 55:313–328. https://doi.org/10.1002/hlca.19720550202

    Article  CAS  Google Scholar 

  • Whistler RL, Smart CL (1953) Chitin. In: Whistler RL, Smart CL (eds) Polysaccharide chemistry. Academic Press Inc, New York, pp 395–405

    Google Scholar 

  • White CFA (1944) Color photography. US Patent 2,363,764

  • Wigglesworth VB (1948) The insect cuticle. Biol Rev 23:408–451. https://doi.org/10.1111/j.1469-185X.1948.tb00566.x

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1957) The physiology of insect cuticle. Annu Rev Entomol 2:37–54. https://doi.org/10.1146/annurev.en.02.010157.000345

    Article  Google Scholar 

  • Winterstein E (1893) Zur kenntniss der pilzcellulose. Ber Dtsch Bot Ges 11:441–445

    Google Scholar 

  • Winterstein E (1894a) Ueber ein stickstoffhaltiges spaltungsprodukt der pilzcellulose. Ber Dtsch Bot Ges 27:3113–3115

    CAS  Google Scholar 

  • Winterstein E (1894b) Zur kenntniss der in den membrane der pilze enthaltenen bestandtheile. Z Physiol Chem Hoppe-Seyler’s 19:521–562

    Google Scholar 

  • Winterstein E (1895a) Zur kenntniss der in den membrane der pilze enthaltenen bestandtheile. Z Physiol Chem Hoppe-Seyler’s 19:134–151

    Google Scholar 

  • Winterstein E (1895b) Ueber pilzcellulose. Ber Dtsch Chem Ges 13:65–70

    Google Scholar 

  • Winterstein E (1895c) Sur un produit de décomposition azote de la cellulose de champignons. Bulletin de la Société Chimique de Paris, vol XIV. Troisième série. Masson et Cie, éditeurs, libraires de l’Académie de Médecine, Paris, pp 502–503

    Google Scholar 

  • Winterstein E (1895d) Sur les produits de dédoublement de la cellulose de champignons. Bulletin de la Société Chimique de Paris, vol XIV. Troisième série. Masson et Cie, éditeurs, libraires de l’Académie de Médecine, Paris, pp 902–903

    Google Scholar 

  • Wisniak J (2015) Charles Hatchett: the discoverer of niobium. Educ Química 26:346–355

    CAS  Google Scholar 

  • Wolfrom ML (1958) US Patent 2,832,766 (Chem Abstracts 52, 20913)

  • Wolfrom ML, Han TMS (1959) The sulfonation of chitosan. J Am Chem Soc 81:1764–1766. https://doi.org/10.1021/ja01516a061

    Article  CAS  Google Scholar 

  • Wolfrom ML, Maher GG, Chaney A (1958) Chitosan nitrate. J Org Chem 23:1990–1991. https://doi.org/10.1021/jo01106a049

    Article  CAS  Google Scholar 

  • Yao K, Li J, Yao F, Yin Y (eds) (2012) Chitosan-based hydrogels: functions and applications. CRC Press, Taylor & Francis Group, Boca Raton, p 511. ISBN 978-1-4398-2114-5

    Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174. https://doi.org/10.3390/md13031133

    Article  CAS  Google Scholar 

  • Yu C, Kecen X, Xiaosai Q (2018) Grafting modification of chitosan. Biopolymer grafting—synthesis and properties. Elsevier, Amsterdam, pp 298–364. https://doi.org/10.1016/b978-0-323-48104-5.00007-x

    Chapter  Google Scholar 

  • Zechmeister L, Tóth G (1931) Zur kenntnis der hydrolyse von chitin mit salzsäure (I. Mitteil.). Ber Dtsch Chem Ges 64:2028–2032. https://doi.org/10.1002/cber.19310640822

    Article  Google Scholar 

  • Zechmeister L, Tóth G (1932) Zur kenntnis der hydrolyse von chitin mit salzsäure (II. Mitteil.). Ber Dtsch Chem Ges 65:161–162. https://doi.org/10.1002/cber.19320650209

    Article  Google Scholar 

  • Zechmeister L, Tóth G (1933) Ein beitrag zur desamidierung des glucosamins. Ber Dtsch Chem Ges 66:522–525. https://doi.org/10.1002/cber.19330660416

    Article  Google Scholar 

  • Zechmeister L, Tóth G (1934) The comparison of herbal and animal chitin. Hoppe-Seylers Z Physiol Chem 223:53–56. https://doi.org/10.1515/bchm2.1934.223.1-2.53

    Article  CAS  Google Scholar 

  • Zechmeister L, Tóth G (1939a) Chitin und seine spaltprodukte. Fortschritte der chemie organischer naturstoffe, vol 2. Wien Verlag von Julius Springer, Berlin, pp 212–247

    Google Scholar 

  • Zechmeister L, Tóth G (1939b) Chromatographische zerlegung der chitinase. Naturwissenschaften 27:367

    CAS  Google Scholar 

  • Zechmeister L, Tóth G (1939c) Chromatographie der in der chitinreihe wirksamen enzyme des emulsins. Enzymologia 7:165–169

    CAS  Google Scholar 

  • Zechmeister L, Grassmann W, Tóth G, Bender R (1932) Über die verknüpfungsart der glucosamin-reste im chitin. Ber Dtsch Chem Ges 65:1706–1708. https://doi.org/10.1002/cber.19320651016

    Article  Google Scholar 

  • Zechmeister L, Tóth G, Balint M (1939a) Uber die chromatographische trennung einiger enzyme des emulsins. Enzymologia 5:302–306

    Google Scholar 

  • Zechmeister L, Tóth G, Vajda E (1939b) Chromatographie der in der chitinreihe wirksamen enzyme der weinbergsgschneck (Helix pomatia). Enzymologia 7:170–171

    CAS  Google Scholar 

  • Zhao DY, Yu S, Sun BN, Gao S, Guo SH, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10:462. https://doi.org/10.3390/polym10040462

    Article  CAS  Google Scholar 

  • Zikakis JP (ed) (1984) Chitin, chitosan, and related enzymes. Academic Press, Inc., Florida, Orlando, p 448. ISBN 9780323149976

    Google Scholar 

Download references

Acknowledgements

It is first a honor and pleasure to thank my mentors, colleagues and friends Professor Benito Casu (1927–2016), Professor Kjell M. Vårum (1953–2016), Professor Michel Morcellet and Research Director Giangiacomo Torri for inspiring my interest in biopolymers in the mid-1990s, in particular chitin and chitosan polysaccharides. I thank the following colleagues for much of the information collected and critical reading of early drafts of this review: Nadia Morin-Crini, Sylvie Bastello-Duflot and Marlène Gruet (Université Bourgogne Franche-Comté, France), Peter Winterton (Université de Toulouse III, France), Giangiacomo Torri (Istituto di Chimica e Biochemica G. Ronzoni, Milan, Italy), and Giuseppe Trunfio (University of Messina, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégorio Crini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crini, G. Historical review on chitin and chitosan biopolymers. Environ Chem Lett 17, 1623–1643 (2019). https://doi.org/10.1007/s10311-019-00901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-019-00901-0

Keywords

Navigation