Skip to main content

Advertisement

Log in

Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010 (17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin that binds to and inhibits the Hsp90 family of molecular chaperones leading to the proteasomal degradation of client proteins critical in malignant cell proliferation and survival. We have undertaken a Phase 1 trial of CNF1010, an oil-in-water nanoemulsion of 17-AAG.

Methods

Patients with advanced solid tumors and adequate organ functions received CNF1010 by 1-h intravenous (IV) infusion, twice a week, 3 out of 4 weeks. Doses were escalated sequentially in single-patient (6 and 12 mg/m2/day) and three-to-six-patient (≥25 mg/m2/day) cohorts according to a modified Fibonacci’s schema. Plasma pharmacokinetic (PK) profiles and biomarkers, including Hsp70 in PBMCs, HER-2 extracellular domain, and IGFBP2 in plasma, were performed.

Results

Thirty-five patients were treated at doses ranging from 6 to 225 mg/m2. A total of 10 DLTs in nine patients (2 events of fatigue, 83 and 175 mg/m2; shock, abdominal pain, ALT increased, increased transaminases, and pain in extremity at 175 mg/m2; extremity pain, atrial fibrillation, and metabolic encephalopathy at 225 mg/m2) were noted. The PK profile of 17-AAG after the first dose appeared to be linear up to 175 mg/m2, with a dose-proportional increase in C max and AUC0–inf. Hsp70 induction in PBMCs and inhibition of serum HER-2 neu extracellular domain indicated biological effects of CNF1010 at doses >83 mg/m2.

Conclusion

The maximum tolerated dose was not formally established. Hsp70 induction in PBMCs and inhibition of serum HER-2 neu extracellular domain indicated biological effects. The CNF1010 clinical program is no longer being pursued due to the toxicity profile of the drug and the development of second-generation Hsp90 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karapanagiotou EM, Syrigos K, Saif MW (2009) Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin Investig Drugs 18(2):161–174

    Article  PubMed  CAS  Google Scholar 

  2. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154(2):267–273

    Article  PubMed  CAS  Google Scholar 

  3. Sausville EA (2001) Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Clin Cancer Res 7:2155–2158

    PubMed  CAS  Google Scholar 

  4. Ferrarini M et al (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619

    Article  PubMed  CAS  Google Scholar 

  5. Schneider C et al (1996) Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc Natl Acad Sci 93:14536–14541

    Article  PubMed  CAS  Google Scholar 

  6. Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2(1):3–24

    Article  PubMed  CAS  Google Scholar 

  7. Takimoto CH, Diggikar S (2002) Heat shock protein and proteasome targeting agents. Hematol Oncol Clin N Am 16:1269–1285

    Article  Google Scholar 

  8. Banerji U, Judson I, Workman P (2003) The clinical applications of heat shock protein inhibitors in cancer present and future. Curr Cancer Drug Targets 3:385–390

    Article  PubMed  CAS  Google Scholar 

  9. Supko JG et al (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  PubMed  CAS  Google Scholar 

  10. Kamal A et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407

    Article  PubMed  CAS  Google Scholar 

  11. Page J et al (1997) Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin (NSC-330507D) toxicity in rats. Proc Am Assoc Cancer Res 38

  12. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharamcol 42:273–279

    Article  CAS  Google Scholar 

  13. Kelland LR et al (1999) DT-diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 91:1940–1949

    Article  PubMed  CAS  Google Scholar 

  14. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  PubMed  CAS  Google Scholar 

  15. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499

    PubMed  CAS  Google Scholar 

  16. Banerji U et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  PubMed  CAS  Google Scholar 

  17. Goetz MP et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087

    Article  PubMed  CAS  Google Scholar 

  18. Grem JL et al (2005) Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol 23:1885–1893

    Article  PubMed  CAS  Google Scholar 

  19. Ramanathan RK et al (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11:3385–3391

    Article  PubMed  CAS  Google Scholar 

  20. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm

  21. Therasse P et al (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92(3):205–216

    Article  PubMed  CAS  Google Scholar 

  22. Zhang H, Chung D, Yang YC, Neely L, Tsurumoto S, Fan J, Zhang L, Biamonte M, Brekken J, Lundgren K, Burrows F (2006) Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol Cancer Ther 5(5):1256–1264

    Article  PubMed  CAS  Google Scholar 

  23. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3

  24. Chiosis G et al (2006) Hsp90 inhibitors—a chronicle from geldanamycin to today’s agents. Curr Opin Investig Drugs 6:534–541

    Google Scholar 

  25. Solit DB, Ivy SP, Kopil C et al (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13(6):1775–1782

    Article  PubMed  CAS  Google Scholar 

  26. Roden DM (2004) Drug-induced prolongation of the QT interval. NEJM 350:1013–1022

    Article  PubMed  CAS  Google Scholar 

  27. Veerareddy PR, Vobalaboina V (2004) Lipid-based formulations of amphotericin B. Drugs Today (Barc) 40:133–145

    Article  CAS  Google Scholar 

  28. Zamboni WC, Gervais AC, Egorin MJ et al (2004) Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 53:329–336

    Article  PubMed  CAS  Google Scholar 

  29. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068:133–141

    Article  PubMed  CAS  Google Scholar 

  30. Newman MS, Colbern GT, Working PK et al (1999) Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol 43:1–7

    Article  PubMed  CAS  Google Scholar 

  31. Working PK, Newman MS, Stuart Y et al (1994) Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in STEALTH liposomes. Liposome Res 46:667–687

    Article  Google Scholar 

  32. Ewer MS, Martin FJ, Henderson C et al (2004) Cardiac safety of liposomal anthracyclines. Semin Oncol 31(suppl 13):161–181

    Article  PubMed  CAS  Google Scholar 

  33. Northfel DW (1994) STEALTH liposomal doxorubicin (SLD) delivers more DOX to AIDS-Kaposi’s sarcoma lesions than to normal skin. Proc Am Soc Clin Oncol 13:51

    Google Scholar 

  34. Rose PG (2005) Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer. Oncologist 10:205–214

    Article  PubMed  CAS  Google Scholar 

  35. Cattel L, Ceruti M, Dosio F (2004) From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother 16(suppl 4):94–97

    PubMed  CAS  Google Scholar 

  36. Vail DM, Amantea MA, Colbern GT et al (2004) Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol 31(suppl 13):16–35

    Article  PubMed  CAS  Google Scholar 

  37. Dragovich T et al (2005) Phase 1 study of CNF1010 (lipid formulation of 17- (allylamino)-17-demethoxygeldanamycin: 17-AAG). Clin Can Res 11:9117s

    Google Scholar 

  38. Ficker E, Denis AT, Wang L, Brown AM (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 I maturation of the cardiac potassium channel hERG. Circ Res 92:e87–e100

    Article  PubMed  Google Scholar 

  39. Bhat RV, Engber TM, Zhu Y, Miller MS, Contreras PC (1997) Identification of insulin-like growth factor binding protein-2 as a biochemical surrogate marker for the in vivo effects of recombinant human insulin-like growth factor-1 in mice. J Pharmacol Exp Ther 281:522–530

    PubMed  CAS  Google Scholar 

  40. Sandri MT, Johansson H, Colleoni M et al (2004) Serum levels of HER2 ECD can determine the response rate to low dose oral cyclophosphamide and methotrexate in patients with advanced stage breast carcinoma. Anticancer Res 24:1261–1266

    PubMed  CAS  Google Scholar 

  41. Maxwell P, van den Berg HW (1999) Changes in the secretion of insulin-like growth factor binding proteins -2 and -4 associated with the development of tamoxifen resistance and estrogen independence in human breast cancer cell lines. Cancer Lett 139:121–127

    Article  PubMed  CAS  Google Scholar 

  42. Chatterjee S, Park ES, Soloff MS (2004) Proliferation of DU145 prostate cancer cells is inhibited by suppressing insulin-like growth factor binding protein-2. Int J Urol 11:876–884

    Article  PubMed  CAS  Google Scholar 

  43. Hayes DF, Yamauchi H, Broadwater G et al (2001) Circulating HER-2/erbB-2/c-neu (HER-2) extracellular domain as a prognostic factor in patients with metastatic breast cancer: cancer and Leukemia Group B Study 8662. Clin Cancer Res 7:2703–2711

    PubMed  CAS  Google Scholar 

  44. Hunter-Lavin C, Davies EL, Bacelar MM et al (2004) Hsp70 release from peripheral blood mononuclear cells. Biochem Biophys Res Commun 324:511–517

    Article  PubMed  CAS  Google Scholar 

  45. Zhong L, Peng X, Hidalgo GE et al (2003) Antibodies to HSP70 and HSP90 in serum in non-small cell lung cancer patients. Cancer Detect Prev 27:285–290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by Biogen Idec Inc., San Diego, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Saif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saif, M.W., Erlichman, C., Dragovich, T. et al. Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010 (17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors. Cancer Chemother Pharmacol 71, 1345–1355 (2013). https://doi.org/10.1007/s00280-013-2134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2134-9

Keywords

Navigation