Skip to main content

Atomistic Simulation Tools to Study Protein Self-Aggregation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

Abstract

Aberrant aggregation of proteins into poorly soluble, toxic structures that accumulate intracellularly or extracellularly leads to a range of disease states including Alzheimer’s, Parkinson’s, Huntington’s, prion diseases, and type II diabetes. Many of the disease-associated amyloidogenic proteins are intrinsically disordered, which makes their experimental investigation challenging due to a limited number of experimental observables to effectively characterize their ensemble of conformations. Molecular dynamics simulations provide dynamic information with atomistic detail, and are increasingly employed to study aggregation processes, offering valuable structural and mechanistic insights. In this chapter, we demonstrate the use of all-atom molecular dynamics simulations to model the self-aggregation of a six-residue amyloidogenic peptide derived from amyloid β, a 39–43 residue-long peptide associated with the pathogenesis of Alzheimer’s disease. We provide detailed instructions on how to obtain the initial monomer conformations and build the multichain systems, how to carry out the simulations, and how to analyze the simulation trajectories to investigate the peptide self-aggregation process.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AØ, Riekel C (2006) The structural biology of protein aggregation diseases: Fundamental questions and some answers. Acc Chem Res 39:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguzzi A, O'Connor T (2010) Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:1–12

    Article  CAS  Google Scholar 

  3. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  4. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Rev 10:S10–S17

    Google Scholar 

  5. DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer's disease and type II diabetes. Chem Soc Rev 41:608–621

    Article  CAS  PubMed  Google Scholar 

  6. Ishimaru D, Andrade LR, Teixeira L, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmuller G, Foguel D, Silva JL (2003) Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemist 42:9022–9027

    Article  CAS  Google Scholar 

  7. Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A, Stefani M (2008) The (1–63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J 94:3635–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva JL, Rangel LP, Costa DCF, Cordeiro Y, De Moura Gallo CV (2013) Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 33:593–603

    Article  CAS  Google Scholar 

  9. Yang-Hartwich Y, Soteras MG, Lin ZP, Holmberg J, Sumi N, Craveiro V, Liang M, Romanoff E, Bingham J, Garofalo F, Alvero A, Mor G (2014) p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34:3605–3616

    Article  PubMed  CAS  Google Scholar 

  10. Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281:13828–13836

    Article  CAS  PubMed  Google Scholar 

  11. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conway KA, Lee S-J, Rochet J-C, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 97:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sousa MM, Cardoso I, Fernandes R, Guimarães A, Saraiva MJ (2001) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy. Am J Pathol 159:1993–2000

    Article  CAS  PubMed  Google Scholar 

  14. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  CAS  PubMed  Google Scholar 

  15. Anderluh G, Gutirrez-Aguirre I, Rabzelj S, Čeru S, Kopitar-Jerala N, Maček P, Turk V, Žerovnik E (2005) Interaction of human stefin B in the prefibrillar oligomeric form with membranes. FEBS J 272:3042–3051

    Article  CAS  PubMed  Google Scholar 

  16. Rabzelj S, Viero G, Gutiérrez-Aguirre I, Turk V, Dalla Serra M, Anderluh G, Žerovnik E (2008) Interaction with model membranes and pore formation by human stefin B - studying the native and prefibrillar states. FEBS J 275:2455–2466

    Article  CAS  PubMed  Google Scholar 

  17. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A 95:4224–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 96:3590–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid β-protein fibrillization. Proc Natl Acad Sci U S A 95:12277–12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J Mol Biol 311:325–340

    Article  CAS  PubMed  Google Scholar 

  21. Marek PJ, Patsalo V, Green DF, Raleigh DP (2012) Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemist 51:8478–8490

    Article  CAS  Google Scholar 

  22. West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hecht MH (1994) De novo design of β-sheet proteins. Proc Natl Acad Sci U S A 91:8729–8730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16:118–126

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    Article  CAS  PubMed  Google Scholar 

  26. Rauscher S, Baud S, Miao M, Keeley FW, Pomes R (2006) Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14:1667–1676

    Article  CAS  PubMed  Google Scholar 

  27. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  28. Dobson CM (2004) Experimental investigation of protein folding and misfolding. Methods 34:4–14

    Article  CAS  PubMed  Google Scholar 

  29. Best RB (2017) Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol 42:147–154

    Article  CAS  PubMed  Google Scholar 

  30. Gerben SR, Lemkul JA, Brown AM, Bevan DR (2014) Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. J Biomol Struct Dyn 32:1817–1832

    Article  CAS  PubMed  Google Scholar 

  31. Piana S, Donchev AG, Robustelli P, Shaw DE (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann KQ, McGovern M, Chiu C-C, de Pablo JJ (2015) Secondary structure of rat and human amylin across force fields. PLoS One 10:e0134091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Henriques J, Cragnell C, Skepö M (2015) Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment. J Chem Theory Comput 11:3420–3431

    Article  CAS  PubMed  Google Scholar 

  34. Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  PubMed  Google Scholar 

  35. Carballo-Pacheco M, Strodel B (2016) Comparison of force fields for Alzheimer's Aβ42: a case study for intrinsically disordered proteins. Protein Sci 26:174–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  CAS  PubMed  Google Scholar 

  37. Larini L, Shea J-E (2012) Role of β-hairpin formation in aggregation: the self-assembly of the amyloid-β(25–35) peptide. Biophys J 103:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matthes D, Gapsys V, Brennecke JT, de Groot BL (2016) An atomistic view of amyloidogenic self-assembly: structure and dynamics of heterogeneous conformational states in the pre-nucleation phase. Sci Rep 6:33156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li G, Pomes R (2013) Binding mechanism of inositol stereoisomers to monomers and aggregates of Aβ(16–22). J Phys Chem B 117:6603–6613

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen PH, Derreumaux P (2013) Conformational ensemble and polymorphism of the all-atom Alzheimer’s Aβ37–42 amyloid peptide oligomers. J Phys Chem B 117:5831–5840

    Article  CAS  PubMed  Google Scholar 

  41. Baftizadeh F, Biarnes X, Pietrucci F, Affinito F, Laio A (2012) Multidimensional view of amyloid fibril nucleation in atomistic detail. J Am Chem Soc 134:3886–3894

    Article  CAS  PubMed  Google Scholar 

  42. Barz B, Olubiyi OO, Strodel B (2014) Early amyloid β-protein aggregation precedes conformational change. Chem Commun 50:5373–5375

    Article  CAS  Google Scholar 

  43. Rauscher S, Pomes R (2017) The liquid structure of elastin. elife 6:e26526–e26521

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sasmal S, Schwierz N, Head-Gordon T (2016) Mechanism of nucleation and growth of Aβ40 fibrils from all-atom and coarse-grained simulations. J Phys Chem B 120:12088–12097

    Article  CAS  PubMed  Google Scholar 

  45. Wagoner VA, Cheon M, Chang I, Hall CK (2014) Impact of sequence on the molecular assembly of short amyloid peptides. Proteins 82:1469–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bieler NS, Knowles TPJ, Frenkel D, Vácha R (2012) Connecting macroscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations. PLoS Comput Biol 8:e1002692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wood SJ, Wetzel R, Martin JD, Hurle MR (1995) Prolines and amyloidogenicity in fragments of the Alzheimer's peptide β/A4. Biochemist 34:724–730

    Article  CAS  Google Scholar 

  48. Colletier J-P, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Molecular basis for amyloid-β polymorphism. Proc Natl Acad Sci U S A 108:16938–16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  51. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  52. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  53. Paci E, Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci U S A 97:6521–6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayor U, Johnson CM, Daggett V, Fersht AR (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc Natl Acad Sci U S A 97:13518–13522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Day R, Bennion BJ, Ham S, Daggett V (2002) Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J Mol Biol 322:189–203

    Article  CAS  PubMed  Google Scholar 

  56. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  57. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  58. Miyamoto S, Kollman PA (1992) SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water molecules. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  59. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  CAS  Google Scholar 

  60. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  61. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  62. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Rauscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meneksedag-Erol, D., Rauscher, S. (2019). Atomistic Simulation Tools to Study Protein Self-Aggregation. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics