Skip to main content

Advertisement

Log in

Development and application of a multipurpose electrodeposition cell configuration for studying plating processes on wafer specimen and for characterizing surface films by scanning electrochemical microscopy

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this report, a versatile experimental concept for electrochemical deposition and subsequent surface characterization studies is presented. This concept can be utilized to perform semiconductor plating processes at laboratory scale followed by scanning electrochemical microscopy (SECM). The same sample holder used for electroplating experiments could be integrated into the SECM instrument. Conductive thin-film barrier materials were deposited on planar silicon wafers. The substrate samples were fixed in the multipurpose sample holder ensuring a large electrical contact area to minimize ohmic drop across the sample surface with a small circular area of the substrate material of 16 mm2 exposed to electrolyte solution. In order to investigate the capabilities of the electrochemical cell configuration, a potentiostatic copper deposition on ruthenium was carried out. Thus, information on film coalescences, grain size, and growth mode could be derived. SECM was used to study the effect of biasing during probe approach curves on a titanium surface. Furthermore, microstructured copper layers were imaged using ferrocenemethanol (FcMeOH) as mediator. The results show that biasing the substrate is essential for non-destructive and interaction-free measurements of semiprecious thin-film materials and copper structures, if FcMeOH is used as electrochemical mediator.

Graphical abstract

Schematic diagram of multipurpose electrodeposition cell configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baklanov M, Ho PS, Zschech E (2012) Advanced interconnects for ULSI technology. Wiley, Dordrecht

    Book  Google Scholar 

  2. Moffat TP, Walker M, Chen PJ, Bonevich JE, Egelhoff WF, Richter L, Witt C, Aaltonen T, Ritala M, Leskelä M, Josell D (2006) Electrodeposition of Cu on Ru barrier layers for damascene processing. J Electrochem Soc 153:C37. doi:10.1149/1.2131826

    Article  CAS  Google Scholar 

  3. Emekli U, West AC (2009) Effect of additives and pulse plating on copper nucleation onto Ru. Electrochim Acta 54:1177–1183. doi:10.1016/j.electacta.2008.08.065

    Article  CAS  Google Scholar 

  4. Armini S, El-Mekki Z, Nagar M, Radisic A, Vereecken PM (2014) Wafer scale copper direct plating on thin PVD RuTa layers: a route to enable filling 30 nm features and below?. J Electrochem Soc 161:D564–D570. doi:10.1149/2.1031410jes

    Article  CAS  Google Scholar 

  5. Nagar M, Radisic A, Strubbe K, Vereecken PM (2016) The effect of the substrate characteristics on the electrochemical nucleation and growth of copper. J Electrochem Soc 163:D3053–D3061

    Article  CAS  Google Scholar 

  6. Kim S, Duquette DJ (2006) Growth of conformal copper films on TaN by electrochemical deposition for ULSI interconnects. Surf Coat Technol 201:2712–2716. doi:10.1016/j.surfcoat.2006.05.022

    Article  CAS  Google Scholar 

  7. Radisic A, Cao Y, Taephaisitphongse P, West AC, Searson PC (2003) Direct copper electrodeposition on TaN barrier layers. J Electrochem Soc 150:C362–C367. doi:10.1149/1.1565137

    Article  CAS  Google Scholar 

  8. Graham L, Steinbrüchel C, Duquette DJ (2002) Nucleation and growth of electrochemically deposited copper on TiN and copper from a Cu NH3 bath. J Electrochem Soc 149:C390–C395. doi:10.1149/1.1487836

    Article  CAS  Google Scholar 

  9. Kim S, Duquette DJ (2006) Nucleation characteristics of directly electrodeposited copper on TiN. J Electrochem Soc 153:C673–C676. doi:10.1149/1.2219712

    Article  CAS  Google Scholar 

  10. Oskam G, Vereecken PM, Searson PC (1999) Electrochemical deposition of copper on n-Si/TiN. J Electrochem Soc 146:1436–1441. doi:10.1149/1.1391782

    Article  CAS  Google Scholar 

  11. Shaw MJ, Grunow S, Duquette DJ (2001) “Seedless” electrochemical deposition of copper on physical vapor deposition-W2N liner materials for ultra large scale integration (ULSI) devices. J Electron Mater 30:1602–1608. doi:10.1007/s11664-001-0179-8

    Article  CAS  Google Scholar 

  12. Josell D, Bonevich JE, Moffat TP, Aaltonen T, Ritala M, Leskelä M (2006) Osmium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett 9:C48–C50. doi:10.1149/1.2179770

    Article  CAS  Google Scholar 

  13. Josell D, Bonevich JE, Moffat TP, Aaltonen T, Ritala M, Leskelä M (2006) Iridium barriers for direct copper electrodeposition in damascene processing. Electrochem Solid-State Lett 9:C48–C50. doi:10.1149/1.2179770

    Article  CAS  Google Scholar 

  14. Chyan O, Arunagiri TN, Ponnuswamy T (2003) Electrodeposition of copper thin film on ruthenium. J Electrochem Soc 150:C347. doi:10.1149/1.1565138

    Article  CAS  Google Scholar 

  15. Lane MW, Murray CE, McFeely FR, Vereecken PM, Rosenberg R (2003) Liner materials for direct electrodeposition of Cu. Appl Phys Lett 83:2330–2332. doi:10.1063/1.1610256

    Article  CAS  Google Scholar 

  16. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889. doi:10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  17. Kim J, Renault C, Nioradze N, Arroyo-Currás N, Leonard KC, Bard AJ (2016) Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J Am Chem Soc 138:8560–8568. doi:10.1021/jacs.6b03980

    Article  CAS  Google Scholar 

  18. Gabrielli C, Ostermann E, Perrot H, Vivier V, Beitone L, Mace C (2005) Concentration mapping around copper microelectrodes studied by scanning electrochemical microscopy. Electrochem Commun 7:962–968. doi:10.1016/j.elecom.2005.06.018

    Article  CAS  Google Scholar 

  19. Izquierdo J, Eifert A, Kranz C, Souto RM (2017) In situ investigation of copper corrosion in acidic chloride solution using atomic force-scanning electrochemical microscopy. Electrochim Acta 247:588–599. doi:10.1016/j.electacta.2017.07.042

    Article  CAS  Google Scholar 

  20. Asserghine A, Filotás D, Nagy L, Nagy G (2017) Scanning electrochemical microscopy investigation of the rate of formation of a passivating TiO2 layer on a Ti G4 dental implant. Electrochem Commun. doi:10.1016/j.elecom.2017.08.018

    Google Scholar 

  21. Izquierdo J, Fernández-Pérez BM, Eifert A, Souto RM, Kranz C (2015) Simultaneous atomic force-scanning electrochemical microscopy (AFM-SECM) imaging of copper dissolution. Electrochim Acta 201:320–332. doi:10.1016/j.electacta.2015.12.160

    Article  Google Scholar 

  22. Izquierdo J, Santana JJ, González S, Souto RM (2010) Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: the protection of copper surfaces by benzotriazole. Electrochim Acta 55:8791–8800. doi:10.1016/j.electacta.2010.08.020

    Article  CAS  Google Scholar 

  23. Izquierdo J, Santana JJ, González S, Souto RM (2012) Scanning microelectrochemical characterization of the anti-corrosion performance of inhibitor films formed by 2-mercaptobenzimidazole on copper. Prog Org Coat 74:526–533. doi:10.1016/j.porgcoat.2012.01.019

    Article  CAS  Google Scholar 

  24. Li C, Li L, Wang C (2014) Study of the inhibitive effect of mixed self-assembled monolayers on copper with SECM. Electrochim Acta 115:531–536. doi:10.1016/j.electacta.2013.11.029

    Article  CAS  Google Scholar 

  25. Mansikkamäki K, Ahonen P, Fabricius G, Murtomäki L, Kontturi K (2005) Inhibitive effect of benzotriazole on copper surfaces studied by SECM. J Electrochem Soc 152:B12–B16. doi:10.1149/1.1829413

    Article  Google Scholar 

  26. Pähler M, Santana JJ, Schuhmann W, Souto RM (2011) Application of AC-SECM in corrosion science: local visualisation of inhibitor films on active metals for corrosion protection. Chem A 17:905–911. doi:10.1002/chem.201000689

    Google Scholar 

  27. Santana JJ, Pähler M, Schuhmann W, Souto RM (2012) Investigation of copper corrosion inhibition with frequency-dependent alternating-current scanning electrochemical microscopy. ChemPlusChem 77:707–712. doi:10.1002/cplu.201200091

    Article  CAS  Google Scholar 

  28. Ramírez-Cano JA, Veleva L, Souto RM, Fernández-Pérez BM (2017) SECM study of the pH distribution over Cu samples treated with 2-mercaptobenzothiazole in NaCl solution. Electrochem Commun 78:60–63. doi:10.1016/j.elecom.2017.04.005

    Article  Google Scholar 

  29. Radisic A, Lühn O, Philipsen HGG, El-Mekki Z, Honore M, Rodet S, Armini S, Drijbooms C, Bender H, Ruythooren W (2011) Copper plating for 3D interconnects. Microelectron Eng 88:701–704. doi:10.1016/j.mee.2010.06.030

    Article  CAS  Google Scholar 

  30. Iffelsberger C, Vatsyayan P, Matysik F-M (2017) Scanning electrochemical microscopy with forced convection introduced by high-precision stirring. Anal Chem 89:1658–1664. doi:10.1021/acs.analchem.6b03764

    Article  CAS  Google Scholar 

  31. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal Chem 79:4778–4787. doi:10.1021/ac070609j

    Article  CAS  Google Scholar 

  32. Lee C, Miller CJ, Bard AJ (1991) Scanning electrochemical microscopy: preparation of submicrometer electrodes. Anal Chem 63:78–83. doi:10.1021/ac00001a016

    Article  CAS  Google Scholar 

  33. Park K-S, Kim S (2010) Seedless copper electrodeposition onto tungsten diffusion barrier. J Electrochem Soc 157:D609–D613. doi:10.1149/1.3491351

    Article  CAS  Google Scholar 

  34. Vargas Llona LD, Jansen HV, Elwenspoek MC (2006) Seedless electroplating on patterned silicon. J Micromech Microeng 16:S1–S6. doi:10.1088/0960-1317/16/6/s01

    Article  Google Scholar 

  35. Galceran J, Cecı J, Puy J (2000) Analytical expressions for feedback currents at the scanning electrochemical microscope. J Phys Chem B 104:7993–8000. doi:10.1021/jp001564s

    Article  CAS  Google Scholar 

  36. Mirkin M, Wang Y (2012) Feedback mode of SECM operation. In: Bard AJ, Mirkin M (eds) Scanning electrochemical microscopy. CRC Press, Boca Raton, pp 76–96

    Google Scholar 

  37. Sheffer M, Mandler D (2008) Why is copper locally etched by scanning electrochemical microscopy?. J Electroanal Chem 622:115–120. doi:10.1016/j.jelechem.2008.05.005

    Article  CAS  Google Scholar 

  38. Wei C, Bard AJ (1995) Scanning electrochemical microscopy XXIX. In situ monitoring of thickness changes of thin-films on electrodes. J Electrochem Soc 142:2523–2527. doi:10.1149/1.2050047

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanekamp, P., Robl, W. & Matysik, FM. Development and application of a multipurpose electrodeposition cell configuration for studying plating processes on wafer specimen and for characterizing surface films by scanning electrochemical microscopy. J Appl Electrochem 47, 1305–1312 (2017). https://doi.org/10.1007/s10800-017-1124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1124-8

Keywords

Navigation