Skip to main content
Log in

Human centromere repositioning within euchromatin after partial chromosome deletion

  • Original Article
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Centromeres are defined by a specialized chromatin organization that includes nucleosomes that contain the centromeric histone variant centromere protein A (CENP-A) instead of canonical histone H3. Studies in various organisms have shown that centromeric chromatin (i.e., CENP-A chromatin or centrochromatin) exhibits plasticity, in that it can assemble on different types of DNA sequences. However, once established on a chromosome, the centromere is maintained at the same position. In humans, this location is the highly homogeneous repetitive DNA alpha satellite. Mislocalization of centromeric chromatin to atypical locations can lead to genome instability, indicating that restriction of centromeres to a distinct genomic position is important for cell and organism viability. Here, we describe a rearrangement of Homo sapiens chromosome 17 (HSA17) that has placed alpha satellite DNA next to euchromatin. We show that on this mutant chromosome, CENP-A chromatin has spread from the alpha satellite into the short arm of HSA17, establishing a ∼700 kb hybrid centromeric domain that spans both repetitive and unique sequences and changes the expression of at least one gene over which it spreads. Our results illustrate the plasticity of human centromeric chromatin and suggest that heterochromatin normally constrains CENP-A chromatin onto alpha satellite DNA. This work highlights that chromosome rearrangements, particularly those that remove the pericentromere, create opportunities for centromeric nucleosomes to move into non-traditional genomic locations, potentially changing the surrounding chromatin environment and altering gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrup-MacDonald ME, Kuo ME, Sullivan LL, Chew K, Sullivan BA (2016) Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles. Genome Res. doi:10.1101/gr.206706.116

    PubMed  Google Scholar 

  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner A, Warburton P (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721

    Article  CAS  PubMed  Google Scholar 

  • Athwal RK, Walkiewicz MP, Baek S, Fu S, Bui M, Camps J, Ried T, Sung MH, Dalal Y (2015) CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M, Kimura H, Kelly DA, Turner BM, Masumoto H, Larionov V, Earnshaw WC (2012) Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J Cell Sci 125:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  CAS  PubMed  Google Scholar 

  • Bloom K, Hill A, Jones E (1989) Conditional dicentric chromosomes in yeast. Prog Clin Biol Res 318:149–158

    CAS  PubMed  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3:730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyarchuk E, Filipescu D, Vassias I, Cantaloube S, Almouzni G (2014) The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. J Cell Sci 127:3347–3359

    Article  CAS  PubMed  Google Scholar 

  • Burrack LS, Berman J (2012) Neocentromeres and epigenetically inherited features of centromeres. Chromosom Res 20:607–619

    Article  CAS  Google Scholar 

  • Cardinale S, Bergmann JH, Kelly D, Nakano M, Valdivia MM, Kimura H, Masumoto H, Larionov V, Earnshaw WC (2009) Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol Biol Cell 20:4194–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O’Neill MJ, O’Neill RJ (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 118:113–125

    Article  CAS  PubMed  Google Scholar 

  • Carone DM, Zhang C, Hall LE, Obergfell C, Carone BR, O’Neill MJ, O’Neill RJ (2013) Hypermorphic expression of centromeric retroelement-encoded small RNAs impairs CENP-A loading. Chromosom Res 21:49–62

    Article  CAS  Google Scholar 

  • Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG (2014) CAL1 is the drosophila CENP-A assembly factor. J Cell Biol 204:313–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo K (2001) Domain organization at the centromere and neocentromere. Dev Cell 1:165–177

    Article  CAS  PubMed  Google Scholar 

  • Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KHA, Wong LH (2009) LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 5 e1000354

  • Chueh AC, Wong LH, Wong N, Choo KH (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93

    Article  CAS  PubMed  Google Scholar 

  • Crawford GE, Holt IE, Mullikin JC, Tai D, Blakesley R, Bouffard G, Young A, Masiello C, Green ED, Wolfsberg TG, Collins FS, National Institutes Of Health Intramural Sequencing C (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc Natl Acad Sci U S A 101:992–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depinet TW, Zackowski JL, Earnshaw WC, Kaffe S, Sekhon GS, Stallard R, Sullivan BA, Vance GH, Van Dyke DL, Willard HF, Zinn AB, Schwartz S (1997) Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet 6:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    Article  PubMed  Google Scholar 

  • Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6 e1000835

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J, Vetrie D, Gorman P, Tomlinson IP, Carter NP (2003) DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 36:361–374

    Article  CAS  PubMed  Google Scholar 

  • Folco HD, Pidoux AL, Urano T, Allshire RC (2008) Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garsed DW, Marshall OJ, Corbin VD, Hsu A, Di Stefano L, Schroder J, Li J, Feng ZP, Kim BW, Kowarsky M, Lansdell B, Brookwell R, Myklebost O, Meza-Zepeda L, Holloway AJ, Pedeutour F, Choo KH, Damore MA, Deans AJ, Papenfuss AT, Thomas DM (2014) The architecture and evolution of cancer neochromosomes. Cancer Cell 26:653–667

    Article  CAS  PubMed  Google Scholar 

  • Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N, Alonso A, Warburton PE, Black BE (2013) The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat Struct Mol Biol 20:687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7:2397–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, Dong Y, McEwen BF, Shang WH, Suzuki E, Okawa K, Cheeseman IM, Fukagawa T (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Howard-Peebles PN, Friedman JM, Harrod MJE, Brookshire GS, Lockwood JE (1985) A stable supernumerary chromosome derived from a deleted segment of 17p. Am J Hum Genet 38:A97

    Google Scholar 

  • Karpen GH, Spradling AC (1990) Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in drosophila. Cell 63:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersey PJ, Staines DM, Lawson D, Kulesha E, Derwent P, Humphrey JC, Hughes DS, Keenan S, Kerhornou A, Koscielny G, Langridge N, McDowall MD, Megy K, Maheswari U, Nuhn M, Paulini M, Pedro H, Toneva I, Wilson D, Yates A, Birney E (2012) Ensembl genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Res 40:D91–D97

    Article  CAS  PubMed  Google Scholar 

  • Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A, Lahav T, Gerami-Nejad M, Berman J (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5 e1000400

  • Lacoste N, Woolfe A, Tachiwana H, Garea AV, Barth T, Cantaloube S, Kurumizaka H, Imhof A, Almouzni G (2014) Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell 53:631–644

    Article  CAS  PubMed  Google Scholar 

  • Lam A, Boivin C, Bonney C, Rudd M, Sullivan B (2006a) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103:4186–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006b) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103:4186–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Maggert KA, Karpen GH (2001) The activation of a neocentromere in drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney KA, Sullivan LL, Matheny JE, Strome ED, Merrett SL, Ferris A, Sullivan BA (2012) Functional epialleles at an endogenous human centromere. Proc Natl Acad Sci U S A 109:13704–13709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley KL, Sekulic N, Guo LY, Tsinman T, Black BE, Cheeseman IM (2015) The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 60:886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334:686–690

    Article  CAS  PubMed  Google Scholar 

  • Mravinac B, Sullivan LL, Reeves JW, Yan CM, Kopf KS, Farr CJ, Schueler MG, Sullivan BA (2009) Histone modifications within the human X centromere region. PLoS One 4:e6602

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy TD, Karpen GH (1995) Localization of centromere function in a drosophila minichromosome. Cell 82:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohzeki J, Bergmann JH, Kouprina N, Noskov VN, Nakano M, Kimura H, Earnshaw WC, Larionov V, Masumoto H (2012) Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J 31:2391–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohzeki J, Shono N, Otake K, Martins NM, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H (2016) KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation. Dev Cell 37:413–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    Article  PubMed  Google Scholar 

  • Olszak AM, van Essen D, Pereira AJ, Diehl S, Manke T, Maiato H, Saccani S, Heun P (2011) Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13:799–808

    Article  CAS  PubMed  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120:425–446

    Article  PubMed  Google Scholar 

  • Perpelescu M, Hori T, Toyoda A, Misu S, Monma N, Ikeo K, Obuse C, Fujiyama A, Fukagawa T (2015) HJURP is involved in the expansion of centromeric chromatin. Mol Biol Cell 26:2742–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast L, van Vuuren C, Kaczmarczyk A, Doering V, Hellwig D, Quinn N, Hoischen C, Diekmann S, Sullivan KF (2011) Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state. PLoS Biol 9:e1001082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JE, Woodlief KS, Sullivan BA (2016) Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin 9:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudd M, Willard H (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20:529–533

    Article  CAS  PubMed  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  • Scott KC, Sullivan BA (2014) Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66–74

    Article  CAS  PubMed  Google Scholar 

  • Shang WH, Hori T, Martins NM, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2013) Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 24:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shchelochkov OA, Cheung SW, Lupski JR (2010) Genomic and clinical characteristics of microduplications in chromosome 17. Am J Med Genet A 152A:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz P, Parka SS, Holder SE, Waters CS, Palmer RW, Berend SA, Shaffer LG, Potocki L, Lupski JR (2001) Trisomy 17p10-p12 resulting from a supernumerary marker chromosome derived from chromosome 17: molecular analysis and delineation of the phenotype. Clin Genet 60:336–344

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA (2010) Optical mapping of protein-DNA complexes on chromatin fibers. Methods Mol Biol 659:99–115

    Article  CAS  PubMed  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan LL, Boivin CD, Mravinac B, Song IY, Sullivan BA (2011) Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosom Res 19:457–470

    Article  CAS  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional drosophila centromere. Genome Res 13:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wahlstrom J, Karpen G (1997) Molecular structure of a functional drosophila centromere. Cell 91:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei A, Maison C, Roche D, Almouzni G (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 3:114–120

    Article  CAS  PubMed  Google Scholar 

  • Thakur J, Sanyal K (2013) Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res 23:638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T, Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K, London D, Lotakis D, Neph S, Neri F, Nguyen ED, Qu H, Reynolds AP, Roach V, Safi A, Sanchez ME, Sanyal A, Shafer A, Simon JM, Song L, Vong S, Weaver M, Yan Y, Zhang Z, Zhang Z, Lenhard B, Tewari M, Dorschner MO, Hansen RS, Navas PA, Stamatoyannopoulos G, Iyer VR, Lieb JD, Sunyaev SR, Akey JM, Sabo PJ, Kaul R, Furey TS, Dekker J, Crawford GE, Stamatoyannopoulos JA (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7:897–900

    Article  CAS  PubMed  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosom Res 12:617–626

    Article  CAS  Google Scholar 

  • Warburton PE, Wevrick R, Mahtani MM, Willard HF (1992) Pulsed-field and two-dimensional gel electrophoresis of long arrays of tandemly repeated DNA: analysis of human centromeric alpha satellite. Methods Mol Biol 12:299–317

    CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol 6:3156–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waye JS, England SB, Willard HF (1987) Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol 7:349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wevrick R, Earnshaw WC, Howard-Peebles PN, Willard HF (1990) Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol 10:6374–6380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  CAS  PubMed  Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in drosophila. Nat Genet 18:30–37

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KH (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng K, de las Heras JI, Ross A, Yang J, Cooke H, Shen MH (2004) Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113:84–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Huntington Willard for the generous gift of the GM08148 cell line and L65-13A [del(17)] and L65-14A (normal HSA17) somatic cell hybrids. We are grateful to Dr. David Corcoran in the Duke Genomics and Bioinformatics Analysis Core Facility for assistance with genomic informatics. This research was partially supported by grants from the March of Dimes Foundation (06-FY10-294 and 1-FY13-517 to B.A.S.) and the National Institutes of Health (GM069514 and GM098500 to B.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Sullivan.

Additional information

Responsible Editor: Conly Rieder

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, L.L., Maloney, K.A., Towers, A.J. et al. Human centromere repositioning within euchromatin after partial chromosome deletion. Chromosome Res 24, 451–466 (2016). https://doi.org/10.1007/s10577-016-9536-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9536-6

Keywords

Navigation