Skip to main content

Cordycepin: A Cordyceps Metabolite with Promising Therapeutic Potential

  • Living reference work entry
  • First Online:

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

For thousands of years, natural products from medicinal mushroom are being used for the cure of different lethal diseases. Among the huge category of medicinal herbs, the genus Cordyceps is gaining special attention due to its broad spectrum of biological activity. Cordycepin, a nucleoside analogue, is the main bioactive ingredient of Cordyceps and known to mediate a variety of pharmacological effects. Many chemically modified cordycepin derivatives have been reported which have shown more potential therapeutic effects. With the advancement in fermentation techniques, it has been possible to produce the higher cordycepin product. The modern techniques enabled the researchers for an easy detection and extraction of cordycepin from fermentation medium. Being a nucleoside analogue, cordycepin can interfere with the DNA/RNA biosynthesis and acts as a potential candidate for the treatment of the dreadful diseases such as cancer. Besides, cordycepin have also been known to modulate a variety of signaling pathways involved in apoptosis, proliferation, metastasis, angiogenesis, and inflammation. This chapter will describe the chemistry, production, detection, and extraction strategies of cordycepin. In addition, variety of therapeutic applications of cordycepin with all possible molecular mechanisms of actions have also been summarized.

This is a preview of subscription content, log in via an institution.

References

  1. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  Google Scholar 

  2. Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. EMBO Rep 10:3

    Article  CAS  Google Scholar 

  3. Tuli HS, Sharma AK, Sandhu SS (2014) Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech 4:1–12

    Article  Google Scholar 

  4. Borchers AT, Keen CL, Gershwin ME (2004) Mushroom, tumor, and immunity: an update. Exp Biol Med 229:393–406

    CAS  Google Scholar 

  5. Zaidman BZ, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67:453–468

    Article  CAS  Google Scholar 

  6. Wang L, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–156

    Google Scholar 

  7. Yue K, Ye M, Zhou Z, Sun W, Lin X (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493

    Article  CAS  Google Scholar 

  8. Cunningham KG, Manson W, Spring FS, Hutchinson SA (1950) Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) link. Nature 166:949–954

    Article  CAS  Google Scholar 

  9. Ng TB, Wang HX (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J Pharm Pharmacol 57:1509–1519

    Article  CAS  Google Scholar 

  10. Tuli HS, Sharma AK, Sandhu SS (2014) Optimization of fermentation conditions for cordycepin production using Cordyceps militaris 3936. J Biol Chem Sci 1:35–47

    Google Scholar 

  11. Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93:863–869

    Article  CAS  Google Scholar 

  12. Tuli HS, Sandhu SS, Kashyap D, Sharma AK (2014) Optimization of extraction conditions and antimicrobial potential of a bioactive metabolite, cordycepin from Cordyceps militaris 3936. WJPPS 3:1525–1535

    Google Scholar 

  13. Rottman F, Guarino AJ (1964) The inhibition of phosphoribosyl-pyrophosphate amidotransferase activity by cordycepin mono phosphate. Biochim Biophys Acta 89:465–472

    CAS  Google Scholar 

  14. Doetsch P, Wu JM, Sawada Y, Suhadolnik RJ (1981) Synthesis and characterization of (2′-5′)pp p3′dA(p3′dA)n, an analogue of (2′-5′)pppA(pA)n. Nature 291:355–358

    Article  CAS  Google Scholar 

  15. Doetsch PW, Suhadolnik RJ, Sawada Y, Mosca JD, Flick MB, Reichenbach NL et al (1981) Core (2′-5′)oligoadenylate and the cordycepin analog: inhibitors of Epstein–Barr virus-induced transformation of human lymphocytes in the absence of interferon. Proc Natl Acad Sci 78:6699–6703

    Article  CAS  Google Scholar 

  16. Wei HP, Xiao-Li YE, Zhang HY, Xue-Gang LI, Zhong YJ (2009) An efficient method of extracting and purifying cordycepin from waste rice medium of Cordyceps militaris. Mycosystema 28:220–225

    CAS  Google Scholar 

  17. Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968

    Article  Google Scholar 

  18. Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299

    Article  Google Scholar 

  19. Masuda M, Urabe E, Honda H, Sakurai A, Sakakibara M (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 40:1199–1205

    Article  CAS  Google Scholar 

  20. Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara MA (2008) New approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47:534–538

    Article  CAS  Google Scholar 

  21. Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2010) Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem 45:129–132

    Article  CAS  Google Scholar 

  22. Holliday J, Cleaver P, Powers ML, Patel D (2004) Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis. Int J Med Mushrooms 6:147–160

    Article  Google Scholar 

  23. Ni H, Zhou XH, Li HH, Huang WF (2009) Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J Chromatogr B 877:2135–2141

    Article  CAS  Google Scholar 

  24. Mao XB, Eksriwong T, Chauvatcharin S, Zhong JJ (2005) Optimization of carbon source and carbon nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 40:1667–1672

    Article  CAS  Google Scholar 

  25. Masuda M, Urabe E, Sakurai A, Sakakibara M (2006) Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 39:641–646

    Article  CAS  Google Scholar 

  26. Masuda M, Das SK, Fujihara S, Hatashita M, Sakurai A (2011) Production of cordycepin by a repeated batch culture of a Cordyceps militaris mutant obtained by proton beam irradiation. J Biosci Bioeng 111:55–60

    Article  CAS  Google Scholar 

  27. Mao XB, Zhong JJ (2006) Significant effect of NH4 on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb Technol 38:343–350

    Article  CAS  Google Scholar 

  28. Shih IL, Tsai KL, Hsieh C (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J 33:193–201

    Article  CAS  Google Scholar 

  29. Leung PH, Wu JY (2007) Effects of ammonium feeding on the production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J Appl Microbiol 103:1942–1949

    Article  CAS  Google Scholar 

  30. Das SK, Masuda M, Sakurai A, Sakakibara M (2009) Effects of additives on cordycepin production using a Cordyceps militaris mutant induced by ion beam irradiation. Afr J Biotechnol 8:3041–3047

    CAS  Google Scholar 

  31. Xie C, Liu G, Gu Z, Fan G, Zhang L, Gu Y (2009) Effects of culture conditions on mycelium biomass and intracellular cordycepin production of Cordyceps militaris in natural medium. Ann Microbiol 59:293–299

    Article  CAS  Google Scholar 

  32. Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2010) Effects of inoculation on production of anticancer drug cordycepin in surface liquid culture using Cordyceps militaris: a minor factor may greatly affect the result. Indian J Biotechnol 9:427–430

    CAS  Google Scholar 

  33. Fan DD, Wang W, Zhong JJ (2012) Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J 60:30–35

    Article  CAS  Google Scholar 

  34. Zhong SM, Du M, Chen WB, Zhang S (2011) Liquid culture conditions for promoting cordycepin secreted from Cordyceps militaris mycelia. Mycosystema 30:229–234

    CAS  Google Scholar 

  35. Zhang JG, Fang TT, Li QL, Wei ZJ (2013) Production of cordycepin by Cordyceps militaris using submerged liquid culture: optimization of the culture medium and repeated batch fermentation. J Food Agric Environ 11:534–538

    CAS  Google Scholar 

  36. Kang C, Wen TC, Kang JC, Meng ZB, Li GR, Hyde KD (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. Sci World J 4:1–15

    Google Scholar 

  37. Jiapeng T, Yiting L, Li Z (2014) Optimization of fermentation conditions and purification of cordycepin from Cordyceps militaris. Prep Biochem Biotechnol 44:90–106

    Article  CAS  Google Scholar 

  38. Zheng FZ, Dong ZH, Yu Q (1999) Modern study of traditional Chinese medicine, vol 6. Xue Yuan Press, Beijing, pp 99–100

    Google Scholar 

  39. Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ et al (2006) Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappa β through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 18:192–197

    Article  CAS  Google Scholar 

  40. Ma Y, Wang Y (2008) Determination of nucleosides in Cordyceps sinensis preparation by dual wavelength TLC-scanning. China Pharm 20:2375–2377

    Google Scholar 

  41. Hu K, Fang DS (2008) Comparison of Cordyceps sinensis and solid fermentation of Cordyceps militaris by TLC. China Pharm 19:1180–1182

    CAS  Google Scholar 

  42. Kredich NM, Guarino AJ (1960) An improved method of isolation and determination of cordycepin. Biochim Biophys Acta 41:361–363

    Article  Google Scholar 

  43. Zhang HX, Wu W, Chen W, Gao XH, Tang LS (2005) Analysis of cordycepin and adenosine contents in fermentation supernatant of Cordyceps millitaris by HPLC. Acta Agric Shanghai 21:53–56

    Google Scholar 

  44. Song JF, Liu CQ, Li DJ, Jin BQ (2008) Determination of cordycepin from cultured Cordyceps sinensis by HPLC-DAD. Food Sci 40:352–354

    Google Scholar 

  45. An J, Lu HC (2008) Determination of adenosine content in Cordyceps militaris link by HPLC. J Guangdong Coll Pharm 24:123–125

    CAS  Google Scholar 

  46. Huang L, Li Q, Chen Y, Wang X, Zhou X (2009) Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. Afr J Microbiol Res 3:957–961

    CAS  Google Scholar 

  47. Chang CY, Lue MY, Pan TM (2005) Determination of adenosine, cordycepin and ergosterol contents in cultivate Antrodia camphorate by HPLC Method. J Food Drug Anal 13:338–342

    CAS  Google Scholar 

  48. Meena H, Mohsin M, Pandey HK, Negi PS, Ahmed Z (2010) Estimation of cordycepin by improved HPLC method in the natural and cultured mycelia of high medicinal value Himalayan entomogenous fungus Cordyceps sinensis. Electron J Environ Agric Food Chem 9:1590–1603

    Google Scholar 

  49. Huang LF, Liang YZ, Guo FQ, Zhou ZF, Cheng BM (2003) Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militaris by LC/ESI-MS. J Pharm Biomed Anal 33:1155–1162

    Article  CAS  Google Scholar 

  50. Xie JW, Huang LF, Hu W, Heand YB, Wong KP (2010) Analysis of the main nucleosides in Cordyceps sinensis by LC/ESI-MS. Molecules 15:305–314

    Article  CAS  Google Scholar 

  51. Ling JY, Sun YJ, Lu P, Zhang CK (2002) Capillary zone electrophoresis determination of cordycepin in Cordyceps spp. Extracted by using ultrasonic. Mycosystema 21:394–399

    CAS  Google Scholar 

  52. Rao YK, Chou CH, Tzeng YM (2006) A simple and rapid method for identification and determination of cordycepin in Cordyceps militaris by capillary electrophoresis. Anal Chim Acta 566:253–258

    Article  CAS  Google Scholar 

  53. Yang FQ, Feng K, Zhao J, Li SP (2009) Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography mass spectrometry. J Pharm Biomed Anal 49:1172–1178

    Article  CAS  Google Scholar 

  54. Wang Y, Li D, Wang Y, Zheng T (2004) Integrated extracting technology of cordycepin and polysaccharides in Cordyceps militaris. Acta Bot Boreali-Occidentalia Sin 25:1863–1867

    Google Scholar 

  55. Rukachaisirikul V, Pramjit S, Pakawatchai C, Isaka M, Supothina S (2004) 10- membered macrolides from the insect pathogenic fungus Cordyceps militaris BCC 2816. J Nat Prod 67:1953–1958

    Article  CAS  Google Scholar 

  56. Rao YK, Fang SH, Wu WS, Tzeng YM (2010) Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J Ethnopharmacol 131:363–364

    Article  CAS  Google Scholar 

  57. Jiansheng M (2008) Research progress on the extraction and purification of cordycepin from Cordyceps militaris. J Anhui Agric Sci 36:1929

    Google Scholar 

  58. Song JF, Liu CQ, Li DJ, Jin BQ (2007) Optimization of cordycepin extraction from cultured Cordyceps militaris by HPLC-DAD coupled with uniform design. J Chem Technol Biotechnol 82:1122–1126

    Article  CAS  Google Scholar 

  59. Ling JY, Zhang GY, Lina JQ, Cuib ZJ, Zhanga CK (2009) Supercritical fluid extraction of cordycepin and adenosine from Cordyceps kyushuensis and purification by high-speed counter-current chromatography. Sep Purif Technol 66:625–629

    Article  CAS  Google Scholar 

  60. Yong W, Wei-dong C, Li W, Rong-ga Z, Hua Z (2010) Extraction method coparison of cordycepin in Cordyceps militaris medium. Anhui Med Pharm J 3:284–285

    Google Scholar 

  61. Zhang H, Wang JW, Dong SZ, Xu FX, Wang SH (2012) The optimization of extraction of cordycepin from fruiting body of Cordyceps militaris (L.) link. Adv Mater Res 393:1024–1028

    Google Scholar 

  62. Chen LI, Aiguo Y, Chunyan C, Zhiping L (2012) Fast determination of adenosine and cordycepin in Cordyceps and its deserted solid medium. Chin J Chromatogr 30:711–715

    Google Scholar 

  63. Yu Z, Chen ZH (2013) Extraction of cordycepin from waste medium of Cordyceps militaris with macroporous resin column choromatography. J Nat Sci Hunan Nor Uni 3:14

    Google Scholar 

  64. Tuli HS, Kumar G, Sadhu SS, Sharma AK, Kashayap D (2015) Apoptotic effect of cordycepin on A549 human lung cancer cells. Turk J Biol 39:306–311

    Google Scholar 

  65. Tuli HS, Chaudhari P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J food Sci Technol 52:4669–4678

    Article  CAS  Google Scholar 

  66. Chen Y, Yang SH, Hueng DY, Syu JP, Liao CC, Wue YC (2014) Cordycepin induces apoptosis of C6 glioma cells through the adenosine2A receptor-p53-caspase-7-PARP pathway. Chem Biol Interact 216:17–25

    Article  CAS  Google Scholar 

  67. Li Y, Li R, Zhu S, Zhou R, Wang L, Du J, Wang Y, Zhou B, Mai L (2015) Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. Oncol Lett 9:2541–2547

    Google Scholar 

  68. Wu WC, Hsiao JR, Lian YY, Lin CY, Huang BM (2007) The apoptotic eVect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother Pharmacol 60:103–111

    Article  CAS  Google Scholar 

  69. Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ, Lu H (2011) Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther 2:224–234

    Article  CAS  Google Scholar 

  70. Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 257:165–173

    Article  CAS  Google Scholar 

  71. Kim H, Naura AS, Errami Y, Ju J, Boulares AH (2011) Cordycepin blocks lung injury-associated inflammation and promotes BRCA1-deficient breast cancer cell killing by effectively inhibiting PARP. Mol Med 17(8):93–900

    Google Scholar 

  72. Lee HJ, Burger P, Vogel M, Friese K, Brüning A (2012) The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest New Drugs 30:1917–1925

    Article  CAS  Google Scholar 

  73. Noh EM, Youn HJ, Jung SH, Han JH, Jeong YJ, Chung EY, Jung JY, Kim BS, Lee SH, Lee YR, Kim JS (2010) Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int J Mol Med 25:255–260

    CAS  Google Scholar 

  74. Nakamura K, Yoshikawa N, Yamaguchi YU, Kagota S, Shinozuka K, Kunitoma M (2006) Antitumor effect of cordycepin (3′deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation. Anticancer Res 26:43–48

    CAS  Google Scholar 

  75. Shi P, Huang Z, Tan X, Chen G (2008) Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find Exp Clin Pharmacol 30:347–353

    Article  CAS  Google Scholar 

  76. Li X, Zhang J, Shi H, Zhu X, He X (2014) Effects of cordycepin on HepG2 and EA.hy926 cells: potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol Lett 7:1556–1562

    Google Scholar 

  77. Lee HH, Jeong JW, Lee JH, Kim GY, Cheong J, Jeong YK, Yoo YH, Choi YH (2013) Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol Rep 30:1257–1264

    CAS  Google Scholar 

  78. Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK (2009) Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophys 490:103–109

    Article  CAS  Google Scholar 

  79. Leen EJ, Kim WJ, Moon SK (2010) Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother Res 24:1755–1761

    Article  CAS  Google Scholar 

  80. Lee SY, Debnath T, Kim SK, Lim BO (2013) Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol 60:439–447

    Article  CAS  Google Scholar 

  81. Jen CY, Lin CY, Leu SF, Huang BM (2011) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis through caspase-9 pathway. Evid Based Complement Alternat Med 2011:1–11

    Article  Google Scholar 

  82. Pan BS, Lin CY, Huang BM (2011) The effect of cordycepin on steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells. Evid Based Complement Alternat Med 2011:1–14

    Google Scholar 

  83. Leea HH, Kim SO, Kim GY, Moond SK, Kime WJ, Jeong YK, Yoog YH, Choi YH (2014) Involvement of autophagy in cordycepin-inducedapoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol 38:239–250

    Article  CAS  Google Scholar 

  84. Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, Kim CG, Jeong YK, Kim WJ, Lee WJ, Choi YH (2012) Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol 40:1697–1704

    CAS  Google Scholar 

  85. Lee HH, Hwang WD, Jeong JW, Park C, Han MH, Hong SH, Jeong YK, Choi YH (2014) Induction of apoptosis and G2/M cell cycle arrest by cordycepin in human prostate carcinoma LNCap cells. J Life Sci 24(1):92–97

    Article  Google Scholar 

  86. Yoshikawa N, Yamada S, Takeuchi C et al (2008) Cordycepin (3′- deoxyadenosine) inhibits the growth of B16-BL6 mouse melanoma cells through the stimulation of adenosine A3 receptor followed by glycogen synthase kinase-3beta activation and cyclin D1 suppression. Naunyn Schmiedebergs Arch Pharmacol 377:591–595

    Article  CAS  Google Scholar 

  87. Yoshikawa N, Kunitomo M, Kagota S, Shinozuka K, Nakamura K (2009) Inhibitory effect of cordycepin on hematogenic metastasis of B16–F1 mouse melanoma cells accelerated by adenosine-5′-diphosphate. Anticancer Res 29:3857–3860

    CAS  Google Scholar 

  88. Thomadaki H, Tsiapalis CM, Scorilas A (2008) The effect of the polyadenylation inhibitor cordycepin on humanMolt-4 and Daudi leukaemia and lymphoma cell lines. Cancer Chemother Pharmacol 61:703–711

    Article  CAS  Google Scholar 

  89. Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Young YH, Choi YH (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 25:817–824

    Article  CAS  Google Scholar 

  90. Chen LS, Stellrecht CM, Gandhi V (2008) RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Br J Haematol 140:682–691

    Article  CAS  Google Scholar 

  91. Ko BS, Lu YJ, Yao WL, Liu TA, Tzean SS, Shen TL, Liou JL (2013) Cordycepin regulates GSK-3b/b-Catenin signaling in human leukemia cells. PLoS One 8, e76320

    Article  CAS  Google Scholar 

  92. Jeong JW, Jin CY, Kim GY, Lee JD, Park C, Kim GD, Kim WJ, Jung WK, Seo SK, Choi W, Choi YH (2010) Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int Immunopharmacol 10:1580–1586

    Article  CAS  Google Scholar 

  93. Zhang DW, Wang ZL, Qi W, Lei W, Zhao GY (2014) Cordycepin (3′-deoxyadenosine) down-regulates the proinflammatory cytokines in inflammation-induced osteoporosis. Inflammation 37:1044–1049

    Article  CAS  Google Scholar 

  94. Yang X, Li Y, He Y, Li T, Wang W, Zhangc J, Wei J, Deng Y, Lina R (2015) Cordycepin alleviates airway hyperreactivity in a murine model of asthma by attenuating the inflammatory process. Int Immunopharmacol 26:401–408

    Article  CAS  Google Scholar 

  95. Kim H, Naura AS, Errami Y, Ju J, Hamid A (2011) Boulares cordycepin blocks lung injury-associated inflammation and promotes BRCA1-deficient breast cancer cell killing by effectively inhibiting PARP. Mol Med 17:893–900

    CAS  Google Scholar 

  96. Hu P, Chen W, Bao J, Jiang L, Wu L (2014) Cordycepin modulates inflammatory and catabolic gene expression in interleukin-1beta-induced human chondrocytes from advanced-stage osteoarthritis: an in vitro study. Int J Clin Exp Pathol 7:6575–6584

    CAS  Google Scholar 

  97. Noh EM, Kim JS, Hur H, Park BH, Song EK, Han MK, Kwon KB, Yoo WH, Shim IK, Lee SJ, Youn HJ, Lee YR (2009) Cordycepin inhibits IL-1b-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology 48:45–48

    Article  CAS  Google Scholar 

  98. Ramesh T, Yoo SK, Kim SW, Hwang SY, Sohn SH, Kim IW, Kim SK (2012) Cordycepin (3′-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol 47:979–987

    Article  CAS  Google Scholar 

  99. Yao LH, Li CH, Yan WW, Huang JN, Liu WX, Xiao P (2011) Cordycepin decreases activity of hippocampal CA1 pyramidal neuron through membrane hyperpolarization. Neurosci Lett 503:256–260

    Article  CAS  Google Scholar 

  100. Cheng Z, He W, Zhou X, Lv Q, Xu X, Yang S, Zhao C, Guo L (2011) Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol 664:20–28

    Article  CAS  Google Scholar 

  101. Yao LH, Huang JN, Li CH, Li HH, Yan WW, Cai ZL, Liu WX, Xiao P (2013) Cordycepin suppresses excitatory synaptic transmission in rat hippocampal slices via a presynaptic mechanism. CNS Neurosci Ther 19:216–221

    Article  CAS  Google Scholar 

  102. Cai ZL, Wang CY, Jiang ZJ, Li HH, Liu WX, Gong LW, Xiao P, Li CH (2013) Effects of cordycepin on Y-maze learning task in mice. Eur J Pharmacol 714:249–253

    Article  CAS  Google Scholar 

  103. Won KJ, Lee SC, Lee CK, Lee HM, Lee SH, Fang Z, Choi OB, Jin M, Kim J, Park T, Choi WS, Kim SK, Bokyung Kim B (2009) Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species–mediated responses in vascular smooth muscle cells in rats. J Pharmacol Sci 109:403–412

    Article  CAS  Google Scholar 

  104. Park ES, Kang DH, Yang MK, Kang JC, Jang YC, Park JS, Kim SK, Shin HS (2014) Cordycepin, 3-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3b/ p70S6K signaling pathway and HO-1 expression. Cardiovasc Toxicol 14:1–9

    Article  CAS  Google Scholar 

  105. Tianzhu Z, Shihai Y, Juan D (2015) The effects of cordycepin on ovalbumin-induced allergic inflammation by strengthening Treg response and suppressing Th17 responses in ovalbumin-sensitized mice. Inflammation 38:1036–1043

    Article  CAS  Google Scholar 

  106. Fung CK, Ko WH (2012) Cordyceps extracts and the major ingredient, cordycepin: possible cellular mechanisms of their therapeutic effects on respiratory disease. In: Ghanei M (ed) Respiratory diseases. InTech. ISBN 978-953-307-964-6. doi:10.5772/31666

    Google Scholar 

  107. Yue GG, Lau CB, Fung KP, Leung PC, Ko WH (2008) Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J Ethnopharmacol 117:92–101

    Article  CAS  Google Scholar 

  108. Shin S, Lee S, Kwon MS, Lee S, Lee CK, Cho K, Ha NJ, Kim K (2010) Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Phytother Res 24:1755–1761

    Article  CAS  Google Scholar 

  109. Takahashi S, Tamai M, Nakajima S, Kato H, Johno H, Nakamura T, Kitamura M (2010) Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol 167:561–575

    Article  CAS  Google Scholar 

  110. Guo P, Kai Q, Gao J, Lian Z, Wu CM, Wu C, Zhu H (2010) Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J Pharmacol Sci 113:395–403

    Article  CAS  Google Scholar 

  111. Zhang D, Deng H, Qi W, Zhao G, Cao X (2015) Osteoprotective effect of cordycepin on estrogen deficiency-induced osteoporosis in vitro and in vivo. Biomed Res Int. doi:10.1155/2015/423869

    Google Scholar 

  112. Tianzhu Z, Shihai Y, Du Juan D (2014) Antidepressant-like effects of cordycepin in a mice model of chronic unpredictable mild stress. Evid Based Complement Alternat Med. doi:10.1155/2014/438506

    Google Scholar 

  113. Li L, He D, Yang J, Wang X (2011) Cordycepin inhibits renal interstitial myofibroblast activation probably by inducing hepatocyte growth factor expression. J Pharmacol Sci 117:286–294

    Article  CAS  Google Scholar 

  114. Lee YR, Noh EM, Jeong EY, Yun SK, Jeong YJ, Kim JH, Kwo KB, Kim BS, Lee SH, Park CS, Kim JS (2009) Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-κB pathway in human dermal fibroblasts. Exp Mol Med 41:548–554

    Article  CAS  Google Scholar 

  115. Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung GH, Kang H (2014) Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience 18:866–881

    Article  Google Scholar 

  116. Zhang W, Li J, Qiu S, Chen J, Zheng Y (2008) Effects of the xopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis on immunocytes of H22 tumor bearing mice. Fitoterapia 79:168–173

    Article  Google Scholar 

  117. Chen J, Zhang W, Lu T, Li J, Zheng Y, Kong L (2006) Morphological and genetic characterization of a cultivated Cordyceps sinensis fungus and its polysaccharide component possessing antioxidant property in H22 tumor-bearing mice. Life Sci 78:2742–2748

    Article  CAS  Google Scholar 

  118. Yamaguchi Y, Kagota S, Nakamura K, Shinozuka K, Kunitomo M (2000) Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res 14:647–649

    Article  CAS  Google Scholar 

  119. Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TT, Lo CK, Cheung JK, Zhu SQ, Tsim KW (2003) A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxideinduced injury. Life Sci 73:2503–2513

    Article  CAS  Google Scholar 

  120. Chen YJ, Shiao MS, Lee SS, Wang SY (1997) Effect of Cordyceps sinensis on the proliferation and differentiation of human leukemic U937 cells. Life Sci 60:2349–2359

    Article  CAS  Google Scholar 

  121. Zhang W, Yang J, Chen J, Hou Y, Han X (2005) Immunomodulatory and anti-tumor effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumourbearing mice. Biotechnol Appl Biochem 42:9–15

    Article  CAS  Google Scholar 

  122. Ohmori T, Tamura K, Fukui K, Kawanishi G, Mitsuyama M, Nomoto K, Miyazaki T (1989) Isolation of galactosaminoglycan moiety (CO–N) from protein-bound polysaccharide of Cordyceps ophioglossoides and its effects against murine tumors. Chem Pharm Bull 37:1019–1022

    Article  CAS  Google Scholar 

  123. Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, Wu Y, Ye W, Yao X (2004) Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 75:465–472

    Article  CAS  Google Scholar 

  124. Kiho T, Yamane A, Hui J, Usui S, Ukai S (1996) Polysaccharides in fungi.36. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 19:294–296

    Article  CAS  Google Scholar 

  125. Isaka M, Boonkhao B, Rachtawee P, Auncharoen P (2007) A xanthocillin-like alkaloid from the insect pathogenic fungus Cordyceps brunnearubra BCC 1395. J Nat Prod 70:656–658

    Article  CAS  Google Scholar 

  126. Kneifel H, König WA, Loeffler W, Müller R (1977) Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch Microbiol 113:121–130

    Article  CAS  Google Scholar 

  127. Nan JX, Park EJ, Yang BK, Song CH, Ko G, Sohn DH (2001) Antifibrotic effect of extracellular biopolymer from submerged mycelial cultures of Cordyceps militaris on liver fibrosis induced by bile duct ligation and scission in rats. Arch Pharm Res 24:327–332

    Article  CAS  Google Scholar 

  128. Chiou WF, Chang PC, Chou CJ, Chen CF (2000) Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci 66:1369–1376

    Article  CAS  Google Scholar 

  129. Cai W, Ye Q, Tang L, Yu B, Zheng M (2011) The effect of cordycepin alone or combined with chemotherapy on the proliferation, migration and apoptosis induction of colon cancer cells in vitro. Chin J Clin 5:4048–4056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Tuli, H.S., Kashyap, D., Sharma, A.K. (2015). Cordycepin: A Cordyceps Metabolite with Promising Therapeutic Potential. In: Merillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19456-1_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19456-1_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19456-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics