Skip to main content

Advertisement

Log in

Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Brucellosis is primarily a zoonotic disease caused by members of the Brucella genus which consists of 11 recognized species based on pathogenicity and host preferences. Peptide vaccines are an alternative strategy to conventional vaccines based on the use of short peptide sequences and engineered to induce highly targeted immune responses, avoiding allergenic and/or reactogenic sequences. In this study, antigenic peptide sequence of Brucella abortus, WLAEIKQRSLMVHG, was chemically synthesized by adding tryptophan to the N-terminus of sequence, purified and characterized for the first time in the literature. Molecular weight of the peptide was determined by using LC–MS. A linear response (R2 > 0.998) is observed for peptide in the range of 2–250 µg/mL. The LOD and LOQ values are 0.08 and 0.27 µg/kg respectively. Precision and accuracy ranges were found to be %RSD < 0.2 and 57.3–103.2%, respectively. Fluorescence property of the peptide was shown via fluorescence spectroscopy measurement. The 3D de novo structure of the peptide was predicted with PEP-FOLD server. According to the data obtained from the lipophilicity study (LogD7.4 = − 3.093 ± 0.195), the peptide can not cross the blood–brain barrier if applied via intravenously. This has shown us that peptide can be used as a peptide candidate at the vaccine studies. The production of antigenic peptides as in this study is the main component of the preparation of synthetic vaccine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abubakar M, Mansoor M, Arshed MJ (2012) Bovine brucellosis: old and new concepts with Pakistan perspective. Pak Vet J 32:147–155

    Google Scholar 

  • Alston RW, Lasagna M, Grimsley GR, Scholtz JM, Reinhart GD, Pace CN (2008) Peptide sequence and conformation strongly influence tryptophan fluorescence. Biophys J 94:2280–2287

    Article  CAS  PubMed  Google Scholar 

  • Bacsa B, Desai B, Dibo G, Kappe CO (2006) Rapid solid-phase peptide synthesis using thermal and controlled microwave irradiation. J Pept Sci 12:633–638. https://doi.org/10.1002/psc.771

    Article  CAS  PubMed  Google Scholar 

  • Bhal SK (2007) Lipophilicity descriptors: understanding when to use LogP & LogD ACD/Labs PhysChem Software Application Notes

  • De BK et al (2008) Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J Clin Microbiol 46:43–49. https://doi.org/10.1128/JCM.01494-07

    Article  CAS  PubMed  Google Scholar 

  • Demarque DP, Crotti AE, Vessecchi R, Lopes JL, Lopes NP (2016) Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat Prod Rep 33:432–455

    Article  CAS  PubMed  Google Scholar 

  • Derman S, Kizilbey K, Mansuroglu B, Mustafaeva Z (2014) Synthesis and characterization of canine parvovirus (CPV) VP2 W-7L-20 synthetic peptide for synthetic vaccine. Fresen Environ Bull 23:558–566

    CAS  Google Scholar 

  • Dorneles EM et al (2015) Immune response of calves vaccinated with Brucella abortus S19 or RB51 and revaccinated with RB. PLoS ONE 10:e0136696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdelyi M, Gogoll A (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 11:1592–1596

    Google Scholar 

  • Filenko A, Demchenko M, Mustafaeva Z, Osada Y, Mustafaev M (2001) Fluorescence study of Cu2+-induced interaction between albumin and anionic polyelectrolytes. Biomacromolecules 2:270–277

    Article  CAS  PubMed  Google Scholar 

  • Garcia M (2005) The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography–electrospray mass spectrometry. J Chromatogr B 825:111–123

    Article  CAS  Google Scholar 

  • Hein RJ (2008) LC-MS analysis of related peptides and anions in the positive mode. Iowa State University, Ames

    Book  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616. https://doi.org/10.1021/cr60274a001

    Article  CAS  Google Scholar 

  • Li Z et al (2018) Brucella abortus phosphoglyceromutase and dihydrodipicolinate reductase induce Th1 and Th2-related immune responses World. J Microbiol Biotechnol 34:22

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Sun H, Xu C, Zhu Y, Xie H (2011) The prediction of peptide charge states for electrospray ionization in mass spectrometry. Procedia Environ Sci 8:483–491

    Article  CAS  Google Scholar 

  • Mannhold R, Kubinyi H, Timmerman H (2008) Lipophilicity in drug action and toxicology. vol 4. Wiley, Hoboken

    Google Scholar 

  • Mansuroglu B, Mustafaeva Z (2012) Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection. Mater Sci Eng C 32:112–118. https://doi.org/10.1016/j.msec.2011.10.004

    Article  CAS  Google Scholar 

  • Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880. https://doi.org/10.1021/ol0474352

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Moisa AA, Kolesanova EF (2010) Synthetic peptide vaccines. Biochem Suppl Ser B 4:321–332

    Article  Google Scholar 

  • Mustafaev M, Mustafaeva Z, Deliloglu-Gurhan SI, Aynagoz G, Unver G, Unal N (2004) Bioconjugates of synthetic peptide epitops of foot-and-mouth disease virus with polyelectrolytes and their immunological activity. J Pept Sci 10:291–291

    Article  CAS  Google Scholar 

  • Mustafaev M, Mustafaeva Z, Mansour B (2006) Covalent conjugation of peptide epitops of VP1 protein of foot-and-mouth disease virus (FMDV) with membrane active anionic polyelectrolytes. J Pept Sci 12:239–239

    Article  CAS  Google Scholar 

  • Mustafaeva Z (2017) Synthesis and characterization of antigenic peptide of sheep pox disease. Kimya Problemlеri 3:255–263

    Google Scholar 

  • Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E (2007) Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 67:1326–1334. https://doi.org/10.1158/0008-5472.CAN-06-3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niessen WM, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrom Rev 25:881–899. https://doi.org/10.1002/mas.20097

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H (2008) WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol 20:211–220. https://doi.org/10.1016/j.coi.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir ZO, Topuzogulları M, Karabulut E, Akdeste ZM (2009) Characterization and purification of viral peptides synthesized with microwave assisted solid phase method. Int J Nat Eng Sci 3:45–48

    Google Scholar 

  • Peptide Property Calculator (2017) http://pepcalc.com/ppc.php. Accessed 28 Dec 2017

  • Roop RM II, Caswell CC (2017) Metals and the biology and virulence of brucella. Springer, New York

    Book  Google Scholar 

  • Sarikaya M, Enginar H (2012) Radioabeling of L-tyrosine with 131I and Investigation of radiopharmaceutical potantial Afyon Kocatepe University. J Sci 12:1–9

    Google Scholar 

  • Schelling E, Diguimbaye C, Daoud S, Nicolet J, Boerlin P, Tanner M, Zinsstag J (2003) Brucellosis and Q-fever seroprevalences of nomadic pastoralists and their livestock in Chad. Prev Vet Med 61:279–293

    Article  CAS  PubMed  Google Scholar 

  • Sciutto E et al (2007) Improvement of the synthetic tri-peptide vaccine (S3Pvac) against porcine Taenia solium cysticercosis in search of a more effective. inexpensive manageable vaccine. Vaccine 25:1368–1378. https://doi.org/10.1016/j.vaccine.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  • Sesardic D (1993) Synthetic peptide vaccines. J Med Microbiol 39:241–242

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theor Comput 10:4745–4758

    Article  CAS  Google Scholar 

  • Shibue M, Mant CT, Hodges RS (2005) Effect of anionic ion-pairing reagent concentration (1–60 mM) on reversed-phase liquid chromatography elution behaviour of peptides. J Chromatogr A 1080:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens MG, Tabatabai LB, Olsen SC, Cheville NF (1994) Immune responses to superoxide dismutase and synthetic peptides of superoxide dismutase in cattle vaccinated with Brucella abortus strain 19 or RB51. Vet Microbiol 41:383–389

    Article  CAS  PubMed  Google Scholar 

  • Strupat K (2005) Molecular weight determination of peptides and proteins by ESI and MALDI. Methods Enzymol 405:1–36

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai LB, Pugh GW Jr (1994) Modulation of immune responses in Balb/c mice vaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptide vaccine. Vaccine 12:919–924

    Article  CAS  PubMed  Google Scholar 

  • Trauger SA, Webb W, Siuzdak G (2002) Peptide and protein analysis with mass spectrometry. J Spectrosc 16:15–28

    Article  CAS  Google Scholar 

  • Wang SS (1973) p-alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ et al (2010) Preparation of a peptide vaccine against GnRH by a bioprocess system based on asparaginase. Vaccine 28:4984–4988. https://doi.org/10.1016/j.vaccine.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  • Yu HM, Chen ST, Wang KT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Org Chem 57:4781–4784

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Fund of the Yildiz Technical University (Project Number: 2014-07-04-YL01) and the TUBITAK MSc Scholarship Program in Priority Areas (2210/C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun Acar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, T., Pelit Arayıcı, P., Ucar, B. et al. Synthesis, Characterization and Lipophilicity Study of Brucella abortus’ Immunogenic Peptide Sequence That Can Be Used in the Future Vaccination Studies. Int J Pept Res Ther 25, 911–918 (2019). https://doi.org/10.1007/s10989-018-9739-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9739-0

Keywords

Navigation