Skip to main content
Log in

Contribution of headspace to the analysis of cyclodextrin inclusion complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Headspace technology is a sampling method of a gas, which has been previously in contact with a liquid or a solid matrix from which volatiles were released into the gaseous phase. It is generally coupled to a subsequent gas chromatography analysis. The headspace analysis can be carried out either as a one-step extraction (static or equilibrium headspace) or as a continuous extraction (dynamic headspace). The static headspace gas chromatography (SH-GC) is gaining an increasing interest for the study of cyclodextrin (CD) inclusion complexes with volatile compounds. CDs are natural supermolecular hosts able to encapsulate volatile compounds and improve their functionalities (e.g. solubility, stability, retention, controlled release). Herein, the application of the SH-GC in the CD field will be reviewed. This paper will focus on the characterization of the inclusion complexes via the SH-GC, mainly aiming at the determination of formation constant (Kf) and encapsulation efficiency (EE%) values. Moreover, it will review the application of the SH-GC to monitor the properties of volatile compounds upon encapsulation (e.g. retention, controlled release).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(source: scopus)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Reproduced with permission from [36])

Fig. 7

(Solid line: Free essential oil; dotted line: Captisol® encapsulated essential oil) reproduced from [30]

Fig. 8

Similar content being viewed by others

References

  1. Cabral-Marques, H.M.: A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 25, 313–326 (2010). https://doi.org/10.1002/ffj.2019

    Article  CAS  Google Scholar 

  2. Kfoury, M., Landy, D., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein J. Org. Chem. 10, 2322–2331 (2014). https://doi.org/10.3762/bjoc.10.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  4. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998). https://doi.org/10.1021/CR970022C

    Article  CAS  PubMed  Google Scholar 

  5. Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014). https://doi.org/10.1021/cr500081p

    Article  CAS  PubMed  Google Scholar 

  6. Decock, G., Fourmentin, S., Surpateanu, G.G., Landy, D., Decock, P., Surpateanu, G.: Experimental and theoretical study on the inclusion compounds of aroma components with β-cyclodextrins. Supramol. Chem. 18, 477–482 (2006). https://doi.org/10.1080/10610270600665749

    Article  CAS  Google Scholar 

  7. Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014). https://doi.org/10.1016/j.jpba.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  8. Bertaut, E., Landy, D.: Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J. Org. Chem. 10, 2630–2641 (2014). https://doi.org/10.3762/bjoc.10.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kfoury, M., Auezova, L., Fourmentin, S., Greige-Gerges, H.: Investigation of monoterpenes complexation with hydroxypropyl-beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 80, 51–60 (2014). https://doi.org/10.1007/s10847-014-0385-7

    Article  CAS  Google Scholar 

  10. Ciobanu, A., Landy, D., Fourmentin, S.: Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res. Int. 53, 110–114 (2013). https://doi.org/10.1016/j.foodres.2013.03.048

    Article  CAS  Google Scholar 

  11. Kfoury, M., Landy, D., Fourmentin, S.: Characterization of cyclodextrin inclusion complexes—a review. Molecules 23, 1204–1226 (2018). https://doi.org/10.3390/molecules23051204

    Article  CAS  PubMed Central  Google Scholar 

  12. Kolb, B.: Headspace sampling with capillary columns. J. Chromatogr. A. 842, 163–205 (1999). https://doi.org/10.1016/S0021-9673(99)00073-4

    Article  CAS  Google Scholar 

  13. Kolb, B., Ettre, L.S.: Static headspace–gas chromatography: theory and practice. Wiley, Hoboken (2006)

    Book  Google Scholar 

  14. Hall, D., Bloor, D., Tawarah, K., Wynjones, E.: Kinetic and equilibrium studies associated with the formation of inclusion-compounds involving normal-butanol and normal-pentanol in aqueous cyclodextrin solutions. J. Chem. Soc. Trans. I 82, 2111–2121 (1986). https://doi.org/10.1039/F19868202111

    Article  CAS  Google Scholar 

  15. Snow, N.H., Slack, G.C.: Head-space analysis in modern gas chromatography. TrAC Trends Anal. Chem. 21, 608–617 (2002). https://doi.org/10.1016/S0165-9936(02)00802-6

    Article  CAS  Google Scholar 

  16. Saito, Y., Yoshihara, K., Tanemura, I., Ueda, H., Sato, T.: Determination of the stability constants of benzene and alkylbenzenes with α-cyclodextrin by static head-space gas chromatography. Chem. Pharm. Bull. 45, 1711–1713 (1997). https://doi.org/10.1248/cpb.45.1711

    Article  CAS  Google Scholar 

  17. Wu, J.S., Zheng, J.Z., Toda, K., Sanemasa, I.: Association of alcohol-cyclodextrin in aqueous medium determined by headspace gas chromatography. Anal. Sci. 15, 701–703 (1999). https://doi.org/10.2116/analsci.15.701

    Article  CAS  Google Scholar 

  18. Fourmentin, S., Outirite, M., Blach, P., Landy, D., Ponchel, A., Monflier, E., Surpateanu, G.: Solubilisation of chlorinated solvents by cyclodextrin derivatives. A study by static headspace gas chromatography and molecular modelling. J. Hazard. Mater. 141, 92–97 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.090

    Article  CAS  PubMed  Google Scholar 

  19. Blach, P., Fourmentin, S., Landy, D., Cazier, F., Surpateanu, G.: Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70, 374–380 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  20. Decock, G., Landy, D., Surpateanu, G., Fourmentin, S.: Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J. Incl. Phenom. Macrocycl. Chem. 62, 297–302 (2008). https://doi.org/10.1007/s10847-008-9471-z

    Article  CAS  Google Scholar 

  21. Kfoury, M., Auezova, L., Greige-Gerges, H., Ruellan, S., Fourmentin, S.: Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies. Food Chem. 164, 454–461 (2014). https://doi.org/10.1016/j.foodchem.2014.05.052

    Article  CAS  PubMed  Google Scholar 

  22. Fourmentin, S., Ciobanu, A., Landy, D., Wenz, G.: Space filling of β-cyclodextrin and β-cyclodextrin derivatives by volatile hydrophobic guests. Beilstein J. Org. Chem. 9, 1185–1191 (2013). https://doi.org/10.3762/bjoc.9.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Szaniszló, N., Fenyvesi, É, Balla, J.: Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J. Incl. Phenom. 53, 241–248 (2005). https://doi.org/10.1007/s10847-005-0245-6

    Article  CAS  Google Scholar 

  24. Saito, Y., Hashizaki, K., Taguchi, H., Ogawa, N.: Complexation of butylbenzenes with 2-hydroxypropyl-cyclodextrins in aqueous solution. J. Environ. Sci. Heal. A 38, 771–777 (2003). https://doi.org/10.1081/ESE-120018590

    Article  CAS  Google Scholar 

  25. Misawa, K., Saito, Y., Hashizaki, K., Taguchi, H., Ogawa, N., Ueda, H.: Stability constants for 1:1 complexes formed between2-hydroxypropyl-β- cyclodextrin with an average substitution degree of 4.4 and benzene and alkylbenzenes as guests by modified static head-space gas chromatography method. J. Incl. Phenom. 53, 237–240 (2005). https://doi.org/10.1007/s10847-004-7238-8

    Article  CAS  Google Scholar 

  26. Lantz, A.W., Wetterer, S.M., Armstrong, D.W.: Use of the three-phase model and headspace analysis for the facile determination of all partition/association constants for highly volatile solute-cyclodextrin-water systems. Anal. Bioanal. Chem. 383, 160–166 (2005). https://doi.org/10.1007/s00216-005-0030-9

    Article  CAS  PubMed  Google Scholar 

  27. Landy, D., Fourmentin, S., Salome, M., Surpateanu, G.: Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J. Incl. Phenom. (2000). https://doi.org/10.1023/a:1008156110999

    Article  Google Scholar 

  28. Saito, Y., Tanemura, I., Ueda, H., Sato, T.: Simultaneous determination of the stability constants for fragrance materials with 2-hydroxypropyl-β-cyclodextrin by static head-space gas chromatography. Chem. Pharm. Bull. 46, 1177–1179 (1998). https://doi.org/10.1248/cpb.46.1177

    Article  CAS  Google Scholar 

  29. Saito, Y., Hashizaki, K., Taguchi, H., Tomono, K., Goto, H., Ogawa, N.: Determination of the stability constants in alkanol/alpha-cyclodextrin mixed system. Drug Dev. Ind. Pharm. 26, 1111–1114 (2000). https://doi.org/10.1081/DDC-100100276

    Article  CAS  PubMed  Google Scholar 

  30. Kfoury, M., Pipkin, J.D., Antle, V., Fourmentin, S.: Captisol ®: an efficient carrier and solubilizing agent for essential oils and their components. Flavour Fragr. J. (2017). https://doi.org/10.1002/ffj.3395

    Article  Google Scholar 

  31. Kfoury, M., Landy, D., Ruellan, S., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J. Org. Chem. 12, 29–42 (2016). https://doi.org/10.3762/bjoc.12.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kfoury, M., Hădărugă, N.G., Hădărugă, D.I., Fourmentin, S.: Cyclodextrins as encapsulation material for flavors and aroma. Encapsulations (2016). https://doi.org/10.1016/B978-0-12-804307-3.00004-1

    Article  Google Scholar 

  33. Saito, Y., Tanemura, I., Sato, T., Ueda, H.: Interaction of fragrance materials with 2-hydroxypropyl-β-cyclodextrin by static and dynamic head-space methods. Int. J. Cosmet. Sci. 21, 189–198 (1999). https://doi.org/10.1046/j.1467-2494.1999.203156.x

    Article  CAS  PubMed  Google Scholar 

  34. Qu, Q.I., Tucker, E., Christian, S.D.: Solubilization of synthetic perfumes by nonionic surfactants and by sulfoalkyl ether β-CDs. J. Incl. Phenom. Macrocycl. Chem. (2003). https://doi.org/10.1023/A:1023041324178

    Article  Google Scholar 

  35. Saito, Y., Misawa, K., Hashizaki, K., Taguchi, H., Ogawa, N., Ueda, H.: A modified method using static head-space gas chromatography for determining the stability constants of 1-alkanol/α-cyclodextrin complexation. Chem. Pharm. Bull. 52, 259–261 (2004). https://doi.org/10.1248/cpb.52.259

    Article  CAS  PubMed  Google Scholar 

  36. Kfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 131, 264–272 (2015). https://doi.org/10.1016/j.carbpol.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  37. Kfoury, M., Auezova, L., Ruellan, S., Greige-Gerges, H., Fourmentin, S.: Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym. 118, 156–164 (2015). https://doi.org/10.1016/j.carbpol.2014.10.073

    Article  CAS  PubMed  Google Scholar 

  38. Becker, L.F., Schwarz, D.H., Wenz, G.: Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs. Beilstein J. Org. Chem. 10, 2920–2927 (2014). https://doi.org/10.3762/bjoc.10.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshihara, K., Tanemura, I., Saito, Y., Ueda, H., Sato, T.: A new competitive method using static head-space gas chromatography for the determination of cyclodextrin complex stability constants. Chem. Pharm. Bull. 45, 2076–2078 (1997). https://doi.org/10.1248/cpb.45.2076

    Article  CAS  Google Scholar 

  40. Landy, D., Mallard, I., Ponchel, A., Monflier, E., Fourmentin, S.: Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10, 225–237 (2012). https://doi.org/10.1007/s10311-011-0351-1

    Article  CAS  Google Scholar 

  41. Ciobanu, A., Mallard, I., Landy, D., Brabie, G., Nistor, D., Fourmentin, S.: Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr. Polym. 87, 1963–1970 (2012). https://doi.org/10.1016/j.carbpol.2011.10.005

    Article  CAS  Google Scholar 

  42. Kfoury, M., Balan, R., Landy, D., Nistor, D., Fourmentin, S.: Investigation of the complexation of essential oil components with cyclodextrins. Supramol. Chem. (2015). https://doi.org/10.1080/10610278.2015.1051977

    Article  Google Scholar 

  43. Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: The effect of solvent interactions on α-, β-, and γ-cyclodextrin/flavor molecular inclusion complexes. J. Agric. Food Chem. 53, 388–392 (2005). https://doi.org/10.1021/jf0488716

    Article  CAS  PubMed  Google Scholar 

  44. Hara, K., Mikuni, K., Hara, K., Hashimoto, H.: Effects of cyclodextrins on deodoration of “aging odor. J. Incl. Phenom. 44, 241–245 (2002). https://doi.org/10.1023/A:1023046413846

    Article  CAS  Google Scholar 

  45. Liu, X.D., Furuta, T., Yoshii, H., Linko, P., Coumans, W.J.: Cyclodextrin encapsulation to prevent the loss of l-menthol and its retention during drying. Biosci. Biotechnol. Biochem. 64, 1608–1613 (2000). https://doi.org/10.1271/bbb.64.1608

    Article  CAS  PubMed  Google Scholar 

  46. Ondo, D., Baránková, E., Dohnal, V.: Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions. J. Chem. Thermodyn. 43, 1270–1277 (2011). https://doi.org/10.1016/j.jct.2011.03.017

    Article  CAS  Google Scholar 

  47. Mallard-Favier, I., Baudelet, D., Fourmentin, S.: VOC trapping by new crosslinked cyclodextrin polymers. J. Incl. Phenom. Macrocycl. Chem. 69, 433–437 (2011). https://doi.org/10.1007/s10847-010-9776-6

    Article  CAS  Google Scholar 

  48. Li, X., Jin, Z., Wang, J.: Complexation of allyl isothiocyanate by α- and β-cyclodextrin and its controlled release characteristics. Food Chem. 103, 461–466 (2007). https://doi.org/10.1016/j.foodchem.2006.08.017

    Article  CAS  Google Scholar 

  49. Aytac, Z., Dogan, S.Y., Tekinay, T., Uyar, T.: Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf. B 120, 125–131 (2014). https://doi.org/10.1016/j.colsurfb.2014.04.006

    Article  CAS  Google Scholar 

  50. Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., Uyar, T.: Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 233, 117–124 (2017). https://doi.org/10.1016/j.foodchem.2017.04.095

    Article  CAS  PubMed  Google Scholar 

  51. Aytac, Z., Yildiz, Z.I., Kayaci-Senirmak, F., San Keskin, N.O., Kusku, S.I., Durgun, E., Tekinay, T., Uyar, T.: Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J. Agric. Food Chem. 64, 7325–7334 (2016). https://doi.org/10.1021/acs.jafc.6b02632

    Article  CAS  PubMed  Google Scholar 

  52. Aytac, Z., Yildiz, Z.I., Kayaci-Senirmak, F., Tekinay, T., Uyar, T.: Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem. 231, 192–201 (2017). https://doi.org/10.1016/j.foodchem.2017.03.113

    Article  CAS  PubMed  Google Scholar 

  53. Perez-Perez, L.M., Armenta-Villegas, L., Santacruz-Ortega, H., Gutiérrez-Lomelí, M., Aguilar, J.A., Reynoso-Marin, F.J., Robles-García, M.A., Robles-Zepeda, R.E., Ruiz-Cruz, S., Del-Toro-Sánchez, C.L.: Characterization of Anemopsis californica essential oil-β-cyclodextrin inclusion complex as antioxidant prolonged-release system. Chem. Pap. 71, 1331–1342 (2017). https://doi.org/10.1007/s11696-016-0125-0

    Article  CAS  Google Scholar 

  54. Kayaci, F., Uyar, T.: Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability. J. Agric. Food Chem. 59, 11772–11778 (2011). https://doi.org/10.1021/jf202915c

    Article  CAS  PubMed  Google Scholar 

  55. Reineccius, T.A., Reineccius, G.A., Peppard, T.L.: Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha, beta, and gamma types. JFS Food Chem. Toxicol. 67, 3271–3279 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb09577.x

    Article  CAS  Google Scholar 

  56. Ciobanu, A., Ruellan, S., Mallard, I., Landy, D., Gennequin, C., Siffert, S., Fourmentin, S.: Cyclodextrin-intercalated layered double hydroxides for fragrance release. J. Incl. Phenom. Macrocycl. Chem. 75, 333–339 (2013). https://doi.org/10.1007/s10847-012-0227-4

    Article  CAS  Google Scholar 

  57. Mallard, I., Bourgeois, D., Fourmentin, S.: A friendly environmental approach for the controlled release of Eucalyptus essential oil. Colloids Surf. A (2018). https://doi.org/10.1016/j.colsurfa.2018.04.010

    Article  Google Scholar 

  58. Kfoury, M., Auezova, L., Greige-Gerges, H., Larsen, K.L., Fourmentin, S.: Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by multiple headspace extraction. Carbohydr. Polym. 151, 1245–1250 (2016). https://doi.org/10.1016/j.carbpol.2016.06.079

    Article  CAS  PubMed  Google Scholar 

  59. Kfoury, M., Landy, D., Ruellan, S., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Nootkatone encapsulation by cyclodextrins: effect on water solubility and photostability. Food Chem. 236, 41–48 (2017). https://doi.org/10.1016/j.foodchem.2016.12.086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Fourmentin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kfoury, M., Landy, D. & Fourmentin, S. Contribution of headspace to the analysis of cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 93, 19–32 (2019). https://doi.org/10.1007/s10847-018-0818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0818-9

Keywords

Navigation